Visible to the public Biblio

Filters: Keyword is android encryption  [Clear All Filters]
2018-02-21
Jiang, Z., Zhou, A., Liu, L., Jia, P., Liu, L., Zuo, Z..  2017.  CrackDex: Universal and automatic DEX extraction method. 2017 7th IEEE International Conference on Electronics Information and Emergency Communication (ICEIEC). :53–60.

With Android application packing technology evolving, there are more and more ways to harden APPs. Manually unpacking APPs becomes more difficult as the time needed for analyzing increase exponentially. At the beginning, the packing technology is designed to prevent APPs from being easily decompiled, tampered and re-packed. But unfortunately, many malicious APPs start to use packing service to protect themselves. At present, most of the antivirus software focus on APPs that are unpacked, which means if malicious APPs apply the packing service, they can easily escape from a lot of antivirus software. Therefore, we should not only emphasize the importance of packing, but also concentrate on the unpacking technology. Only by doing this can we protect the normal APPs, and not miss any harmful APPs at the same time. In this paper, we first systematically study a lot of DEX packing and unpacking technologies, then propose and develop a universal unpacking system, named CrackDex, which is capable of extracting the original DEX file from the packed APP. We propose three core technologies: simulation execution, DEX reassembling, and DEX restoration, to get the unpacked DEX file. CrackDex is a part of the Dalvik virtual machine, and it monitors the execution of functions to locate the unpacking point in the portable interpreter, then launches the simulation execution, collects the data of original DEX file through corresponding structure pointer, finally fulfills the unpacking process by reassembling the data collected. The results of our experiments show that CrackDex can be used to effectively unpack APPs that are packed by packing service in a universal approach without any other knowledge of packing service.

Demirol, D., Das, R., Tuna, G..  2017.  An android application to secure text messages. 2017 International Artificial Intelligence and Data Processing Symposium (IDAP). :1–6.

For mobile phone users, short message service (SMS) is the most commonly used text-based communication type on mobile devices. Users can interact with other users and services via SMS. For example, users can send private messages, use information services, apply for a job advertisement, conduct bank transactions, and so on. Users should be very careful when using SMS. During the sending of SMS, the message content should be aware that it can be captured and act accordingly. Based on these findings, the elderly, called as “Silent Generation” which represents 70 years or older adults, are text messaging much more than they did in the past. Therefore, they need solutions which are both simple and secure enough if there is a need to send sensitive information via SMS. In this study, we propose and develop an android application to secure text messages. The application has a simple and easy-to-use graphical user interface but provides significant security.

Grgić, K., Kovačevic, Z., Čik, V. K..  2017.  Performance analysis of symmetric block cryptosystems on Android platform. 2017 International Conference on Smart Systems and Technologies (SST). :155–159.

The symmetric block ciphers, which represent a core element for building cryptographic communications systems and protocols, are used in providing message confidentiality, authentication and integrity. Various limitations in hardware and software resources, especially in terminal devices used in mobile communications, affect the selection of appropriate cryptosystem and its parameters. In this paper, an implementation of three symmetric ciphers (DES, 3DES, AES) used in different operating modes are analyzed on Android platform. The cryptosystems' performance is analyzed in different scenarios using several variable parameters: cipher, key size, plaintext size and number of threads. Also, the influence of parallelization supported by multi-core CPUs on cryptosystem performance is analyzed. Finally, some conclusions about the parameter selection for optimal efficiency are given.

Lindawati, Siburian, R..  2017.  Steganography implementation on android smartphone using the LSB (least significant bit) to MP3 and WAV audio. 2017 3rd International Conference on Wireless and Telematics (ICWT). :170–174.

The rapid growth of science and technology in the telecommunications world can come up with new ways for some people bent on abusing for threatening information security as hackers, crackers, carder, phreaker and so on. If the information is on the wrong side will result in losses. Information that must be considered is the security of confidential information. Steganography is a method that can be used to hide a message by using digital media. Digital Steganography using digital media as the container vessel such as images, sounds, text, and video. Hidden secret data can also include images, audio, text, and video. In this final audio steganography implemented. One method that can be used in steganography is the Least Significant Bit (LSB). Steganography implementation will be accompanied by the application of cryptography in the form of encryption and decryption. This method works is messages that have been encrypted beforehand will be hidden evenly on each region in MP3 or WAV already divided, with modify / change the LSB of the media container with the bits of information to be hidden. In making the steganography application, the author uses the Java programming language eclipse, because the program is quite easy and can be run in the Android smartphone operating system.

Talreja, R., Motwani, D..  2017.  SecTrans: Enhacing user privacy on Android Platform. 2017 International Conference on Nascent Technologies in Engineering (ICNTE). :1–4.

Interchange of information through cell phones, Tabs and PDAs (Personal Digital Assistant) is the new trend in the era of digitization. In day-to-day activities, sensitive information through mobile phones is exchanged among the users. This sensitive information can be in the form of text messages, images, location, etc. The research on Android mobile applications was done at the MIT, and found that applications are leaking enormous amount of information to the third party servers. 73 percent of 55 Android applications were detected to leak personal information of the users [8]. Transmission of files securely on Android is a big issue. Therefore it is important to shield the privacy of user data on Android operating system. The main motive of this paper is to protect the privacy of data on Android Platform by allowing transmission of textual data, location, pictures in encrypted format. By doing so, we achieved intimacy and integrity of data.

Win, E. K., Yoshihisa, T., Ishi, Y., Kawakami, T., Teranishi, Y., Shimojo, S..  2017.  A Lightweight Multi-receiver Encryption Scheme with Mutual Authentication. 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC). 2:491–497.

In this paper, we propose a lightweight multi-receiver encryption scheme for the device to device communications on Internet of Things (IoT) applications. In order for the individual user to control the disclosure range of his/her own data directly and to prevent sensitive personal data disclosure to the trusted third party, the proposed scheme uses device-generated public keys. For mutual authentication, third party generates Schnorr-like lightweight identity-based partial private keys for users. The proposed scheme provides source authentication, message integrity, replay-attack prevention and implicit user authentication. In addition to more security properties, computation expensive pairing operations are eliminated to achieve less time usage for both sender and receiver, which is favourable property for IoT applications. In this paper, we showed a proof of security of our scheme, computational cost comparison and experimental performance evaluations. We implemented our proposed scheme on real embedded Android devices and confirmed that it achieves less time cost for both encryption and decryption comparing with the existing most efficient certificate-based multi-receiver encryption scheme and certificateless multi-receiver encryption scheme.

2017-03-20
Hahn, Florian, Kerschbaum, Florian.  2016.  Poly-Logarithmic Range Queries on Encrypted Data with Small Leakage. Proceedings of the 2016 ACM on Cloud Computing Security Workshop. :23–34.

Privacy-preserving range queries allow encrypting data while still enabling queries on ciphertexts if their corresponding plaintexts fall within a requested range. This provides a data owner the possibility to outsource data collections to a cloud service provider without sacrificing privacy nor losing functionality of filtering this data. However, existing methods for range queries either leak additional information (like the ordering of the complete data set) or slow down the search process tremendously by requiring to query each ciphertext in the data collection. We present a novel scheme that only leaks the access pattern while supporting amortized poly-logarithmic search time. Our construction is based on the novel idea of enabling the cloud service provider to compare requested range queries. By doing so, the cloud service provider can use the access pattern to speed-up search time for range queries in the future. On the one hand, values that have fallen within a queried range, are stored in an interactively built index for future requests. On the other hand, values that have not been queried do not leak any information to the cloud service provider and stay perfectly secure. In order to show its practicability we have implemented our scheme and give a detailed runtime evaluation.

Karbab, ElMouatez Billah, Debbabi, Mourad, Derhab, Abdelouahid, Mouheb, Djedjiga.  2016.  Cypider: Building Community-based Cyber-defense Infrastructure for Android Malware Detection. Proceedings of the 32Nd Annual Conference on Computer Security Applications. :348–362.

The popularity of Android OS has dramatically increased malware apps targeting this mobile OS. The daily amount of malware has overwhelmed the detection process. This fact has motivated the need for developing malware detection and family attribution solutions with the least manual intervention. In response, we propose Cypider framework, a set of techniques and tools aiming to perform a systematic detection of mobile malware by building an efficient and scalable similarity network infrastructure of malicious apps. Our detection method is based on a novel concept, namely malicious community, in which we consider, for a given family, the instances that share common features. Under this concept, we assume that multiple similar Android apps with different authors are most likely to be malicious. Cypider leverages this assumption for the detection of variants of known malware families and zero-day malware. It is important to mention that Cypider does not rely on signature-based or learning-based patterns. Alternatively, it applies community detection algorithms on the similarity network, which extracts sub-graphs considered as suspicious and most likely malicious communities. Furthermore, we propose a novel fingerprinting technique, namely community fingerprint, based on a learning model for each malicious community. Cypider shows excellent results by detecting about 50% of the malware dataset in one detection iteration. Besides, the preliminary results of the community fingerprint are promising as we achieved 87% of the detection.

Chakraborty, Supriyo, Tripp, Omer.  2016.  Eavesdropping and Obfuscation Techniques for Smartphones. Proceedings of the International Conference on Mobile Software Engineering and Systems. :291–292.

Mobile apps often collect and share personal data with untrustworthy third-party apps, which may lead to data misuse and privacy violations. Most of the collected data originates from sensors built into the mobile device, where some of the sensors are treated as sensitive by the mobile platform while others permit unconditional access. Examples of privacy-prone sensors are the microphone, camera and GPS system. Access to these sensors is always mediated by protected function calls. On the other hand, the light sensor, accelerometer and gyroscope are considered innocuous. All apps have unrestricted access to their data. Unfortunately, this gap is not always justified. State-of-the-art privacy mechanisms on Android provide inadequate access control and do not address the vulnerabilities that arise due to unmediated access to so-called innocuous sensors on smartphones. We have developed techniques to demonstrate these threats. As part of our demonstration, we illustrate possible attacks using the innocuous sensors on the phone. As a solution, we present ipShield, a framework that provides users with greater control over their resources at runtime so as to protect against such attacks. We have implemented ipShield by modifying the AOSP.

Lara-Nino, Andres, Carlos, Miguel, Morales-Sandoval, Arturo, Diaz-Perez.  2016.  An evaluation of AES and present ciphers for lightweight cryptography on smartphones. :87–93.

In this work we present a study that evaluates and compares two block ciphers, AES and PRESENT, in the context of lightweight cryptography for smartphones security applications. To the best of our knowledge, this is the first comparison between these ciphers using a smartphone as computing platform. AES is the standard for symmetric encryption and PRESENT is one of the first ultra-lightweight ciphers proposed in the literature and included in the ISO/IEC 29192-2. In our study, we consider execution time, voltage consumption and memory usage as metrics for comparison purposes. The two block ciphers were evaluated through several experiments in a low-cost smartphone using Android built in tools. From the results we conclude that, for general purpose encryption AES performs statistically better although block-to-block PRESENT delivers better results.

Krutz, Daniel E., Munaiah, Nuthan, Meneely, Andrew, Malachowsky, Samuel A..  2016.  Examining the Relationship Between Security Metrics and User Ratings of Mobile Apps: A Case Study. Proceedings of the International Workshop on App Market Analytics. :8–14.

The success or failure of a mobile application (`app') is largely determined by user ratings. Users frequently make their app choices based on the ratings of apps in comparison with similar, often competing apps. Users also expect apps to continually provide new features while maintaining quality, or the ratings drop. At the same time apps must also be secure, but is there a historical trade-off between security and ratings? Or are app store ratings a more all-encompassing measure of product maturity? We used static analysis tools to collect security-related metrics in 38,466 Android apps from the Google Play store. We compared the rate of an app's permission misuse, number of requested permissions, and Androrisk score, against its user rating. We found that high-rated apps have statistically significantly higher security risk metrics than low-rated apps. However, the correlations are weak. This result supports the conventional wisdom that users are not factoring security risks into their ratings in a meaningful way. This could be due to several reasons including users not placing much emphasis on security, or that the typical user is unable to gauge the security risk level of the apps they use everyday.

Atici, Mehmet Ali, Sagiroglu, Seref, Dogru, Ibrahim Alper.  2016.  Android malware analysis approach based on control flow graphs and machine learning algorithms. :26–31.

Smart devices from smartphones to wearable computers today have been used in many purposes. These devices run various mobile operating systems like Android, iOS, Symbian, Windows Mobile, etc. Since the mobile devices are widely used and contain personal information, they are subject to security attacks by mobile malware applications. In this work we propose a new approach based on control flow graphs and machine learning algorithms for static Android malware analysis. Experimental results have shown that the proposed approach achieves a high classification accuracy of 96.26% in general and high detection rate of 99.15% for DroidKungfu malware families which are very harmful and difficult to detect because of encrypting the root exploits, by reducing data dimension significantly for real time analysis.

Im, Jong-Hyuk, Choi, JinChun, Nyang, DaeHun, Lee, Mun-Kyu.  2016.  Privacy-Preserving Palm Print Authentication Using Homomorphic Encryption. :878–881.

Biometric verification systems have security issues regarding the storage of biometric data in that a user's biometric features cannot be changed into other ones even when a system is compromised. To address this issue, it may be safe to store the biometrics data on a reliable remote server instead of storing them in a local device. However, this approach may raise a privacy issue. In this paper, we propose a biometric verification system where the biometric data are stored in a remote server in an encrypted form and the similarity of the user input to the registered biometric data is computed in an encrypted domain using a homomorphic encryption. We evaluated the performance of the proposed system through an implementation on an Android-based smartphone and an i7-based server.

Fuhry, Benny, Tighzert, Walter, Kerschbaum, Florian.  2016.  Encrypting Analytical Web Applications. Proceedings of the 2016 ACM on Cloud Computing Security Workshop. :35–46.

The software-as-a-service (SaaS) market is growing very fast, but still many clients are concerned about the confidentiality of their data in the cloud. Motivated hackers or malicious insiders could try to steal the clients' data. Encryption is a potential solution, but supporting the necessary functionality also in existing applications is difficult. In this paper, we examine encrypting analytical web applications that perform extensive number processing operations in the database. Existing solutions for encrypting data in web applications poorly support such encryption. We employ a proxy that adjusts the encryption to the level necessary for the client's usage and also supports additively homomorphic encryption. This proxy is deployed at the client and all encryption keys are stored and managed there, while the application is running in the cloud. Our proxy is stateless and we only need to modify the database driver of the application. We evaluate an instantiation of our architecture on an exemplary application. We only slightly increase page load time on average from 3.1 seconds to 4.7. However, roughly 40% of all data columns remain probabilistic encrypted. The client can set the desired security level for each column using our policy mechanism. Hence our proxy architecture offers a solution to increase the confidentiality of the data at the cloud provider at a moderate performance penalty.

Canfora, Gerardo, Medvet, Eric, Mercaldo, Francesco, Visaggio, Corrado Aaron.  2016.  Acquiring and Analyzing App Metrics for Effective Mobile Malware Detection. Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics. :50–57.

Android malware is becoming very effective in evading detection techniques, and traditional malware detection techniques are demonstrating their weaknesses. Signature based detection shows at least two drawbacks: first, the detection is possible only after the malware has been identified, and the time needed to produce and distribute the signature provides attackers with window of opportunities for spreading the malware in the wild. For solving this problem, different approaches that try to characterize the malicious behavior through the invoked system and API calls emerged. Unfortunately, several evasion techniques have proven effective to evade detection based on system and API calls. In this paper, we propose an approach for capturing the malicious behavior in terms of device resource consumption (using a thorough set of features), which is much more difficult to camouflage. We describe a procedure, and the corresponding practical setting, for extracting those features with the aim of maximizing their discriminative power. Finally, we describe the promising results we obtained experimenting on more than 2000 applications, on which our approach exhibited an accuracy greater than 99%.

Barbareschi, Mario, Cilardo, Alessandro, Mazzeo, Antonino.  2016.  Partial FPGA Bitstream Encryption Enabling Hardware DRM in Mobile Environments. Proceedings of the ACM International Conference on Computing Frontiers. :443–448.

The concept of digital right management (DRM) has become extremely important in current mobile environments. This paper shows how partial bitstream encryption can allow the secure distribution of hardware applications resembling the mechanisms of traditional software DRM. Building on the recent developments towards the secure distribution of hardware cores, the paper demonstrates a prototypical implementation of a user mobile device supporting such distribution mechanisms. The prototype extends the Android operating system with support for hardware reconfigurability and showcases the interplay of novel security concepts enabled by hardware DRM, the advantages of a design flow based on high-level synthesis, and the opportunities provided by current software-rich reconfigurable Systems-on-Chips. Relying on this prototype, we also collected extensive quantitative results demonstrating the limited overhead incurred by the secure distribution architecture.