Biblio
The implication of Cyber-Physical Systems (CPS) in critical infrastructures (e.g., smart grids, water distribution networks, etc.) has introduced new security issues and vulnerabilities to those systems. In this paper, we demonstrate that black-box system identification using Support Vector Regression (SVR) can be used efficiently to build a model of a given industrial system even when this system is protected with a watermark-based detector. First, we briefly describe the Tennessee Eastman Process used in this study. Then, we present the principal of detection scheme and the theory behind SVR. Finally, we design an efficient black-box SVR algorithm for the Tennessee Eastman Process. Extensive simulations prove the efficiency of our proposed algorithm.
In Machine Learning, White Box Adversarial Attacks rely on knowing underlying knowledge about the model attributes. This works focuses on discovering to distrinct pieces of model information: the underlying architecture and primary training dataset. With the process in this paper, a structured set of input probes and the output of the model become the training data for a deep classifier. Two subdomains in Machine Learning are explored - image based classifiers and text transformers with GPT-2. With image classification, the focus is on exploring commonly deployed architectures and datasets available in popular public libraries. Using a single transformer architecture with multiple levels of parameters, text generation is explored by fine tuning off different datasets. Each dataset explored in image and text are distinguishable from one another. Diversity in text transformer outputs implies further research is needed to successfully classify architecture attribution in text domain.
We consider the problem of protecting cloud services from simultaneous white-box and black-box attacks. Recent research in cryptographic program obfuscation considers the problem of protecting the confidentiality of programs and any secrets in them. In this model, a provable program obfuscation solution makes white-box attacks to the program not more useful than black-box attacks. Motivated by very recent results showing successful black-box attacks to machine learning programs run by cloud servers, we propose and study the approach of augmenting the program obfuscation solution model so to achieve, in at least some class of application scenarios, program confidentiality in the presence of both white-box and black-box attacks.We propose and formally define encrypted-input program obfuscation, where a key is shared between the entity obfuscating the program and the entity encrypting the program's inputs. We believe this model might be of interest in practical scenarios where cloud programs operate over encrypted data received by associated sensors (e.g., Internet of Things, Smart Grid).Under standard intractability assumptions, we show various results that are not known in the traditional cryptographic program obfuscation model; most notably: Yao's garbled circuit technique implies encrypted-input program obfuscation hiding all gates of an arbitrary polynomial circuit; and very efficient encrypted-input program obfuscation for range membership programs and a class of machine learning programs (i.e., decision trees). The performance of the latter solutions has only a small constant overhead over the equivalent unobfuscated program.
Cybersecurity community is slowly leveraging Machine Learning (ML) to combat ever evolving threats. One of the biggest drivers for successful adoption of these models is how well domain experts and users are able to understand and trust their functionality. As these black-box models are being employed to make important predictions, the demand for transparency and explainability is increasing from the stakeholders.Explanations supporting the output of ML models are crucial in cyber security, where experts require far more information from the model than a simple binary output for their analysis. Recent approaches in the literature have focused on three different areas: (a) creating and improving explainability methods which help users better understand the internal workings of ML models and their outputs; (b) attacks on interpreters in white box setting; (c) defining the exact properties and metrics of the explanations generated by models. However, they have not covered, the security properties and threat models relevant to cybersecurity domain, and attacks on explainable models in black box settings.In this paper, we bridge this gap by proposing a taxonomy for Explainable Artificial Intelligence (XAI) methods, covering various security properties and threat models relevant to cyber security domain. We design a novel black box attack for analyzing the consistency, correctness and confidence security properties of gradient based XAI methods. We validate our proposed system on 3 security-relevant data-sets and models, and demonstrate that the method achieves attacker's goal of misleading both the classifier and explanation report and, only explainability method without affecting the classifier output. Our evaluation of the proposed approach shows promising results and can help in designing secure and robust XAI methods.
Mobile crowd sensing (MCS) is a rapidly developing technique for information collection from the users of mobile devices. This technique deals with participants' personal information such as their identities and locations, thus raising significant security and privacy concerns. Accordingly, anonymous authentication schemes have been widely considered for preserving participants' privacy in MCS. However, mobile devices are easy to lose and vulnerable to device capture attacks, which enables an attacker to extract the private authentication key of a mobile application and to further invade the user's privacy by linking sensed data with the user's identity. To address this issue, we have devised a special anonymous authentication scheme where the authentication request algorithm can be obfuscated into an unintelligible form and thus the authentication key is not explicitly used. This scheme not only achieves authenticity and unlinkability for participants, but also resists impersonation, replay, denial-of-service, man-in-the-middle, collusion, and insider attacks. The scheme's obfuscation algorithm is the first obfuscator for anonymous authentication, and it satisfies the average-case secure virtual black-box property. The scheme also supports batch verification of authentication requests for improving efficiency. Performance evaluations on a workstation and smart phones have indicated that our scheme works efficiently on various devices.
The notion of attribute-based encryption with outsourced decryption (OD-ABE) was proposed by Green, Hohenberger, and Waters. In OD-ABE, the ABE ciphertext is converted to a partially-decrypted ciphertext that has a shorter bit length and a faster decryption time than that of the ABE ciphertext. In particular, the transformation can be performed by a powerful third party with a public transformation key. In this paper, we propose a generic approach for constructing ABE with outsourced decryption from standard ABE, as long as the later satisfies some additional properties. Its security can be reduced to the underlying standard ABE in the selective security model by a black-box way. To avoid the drawback of selective security in practice, we further propose a modified decryption outsourcing mode so that our generic construction can be adapted to satisfying adaptive security. This partially solves the open problem of constructing an OD-ABE scheme, and its adaptive security can be reduced to the underlying ABE scheme in a black-box way. Then, we present some concrete constructions that not only encompass existing ABE outsourcing schemes of Green et al., but also result in new selectively/adaptively-secure OD-ABE schemes with more efficient transformation key generation algorithm. Finally, we use the PBC library to test the efficiency of our schemes and compare the results with some previous ones, which shows that our schemes are more efficient in terms of decryption outsourcing and transformation key generation.
Accountable authority identity-based encryption (A-IBE), as an attractive way to guarantee the user privacy security, enables a malicious private key generator (PKG) to be traced if it generates and re-distributes a user private key. Particularly, an A-IBE scheme achieves full black-box security if it can further trace a decoder box and is secure against a malicious PKG who can access the user decryption results. In PKC'11, Sahai and Seyalioglu presented a generic construction for full black-box A-IBE from a primitive called dummy identity-based encryption, which is a hybrid between IBE and attribute-based encryption (ABE). However, as the complexity of ABE, their construction is inefficient and the size of private keys and ciphertexts in their instantiation is linear in the length of user identity. In this paper, we present a new efficient generic construction for full black-box A-IBE from a new primitive called token-based identity-based encryption (TB-IBE), without using ABE. We first formalize the definition and security model for TB-IBE. Subsequently, we show that a TB-IBE scheme satisfying some properties can be converted to a full black-box A-IBE scheme, which is as efficient as the underlying TB-IBE scheme in terms of computational complexity and parameter sizes. Finally, we give an instantiation with the computational complexity as O(1) and the constant size master key pair, private keys, and ciphertexts.
In this work, a quantum design for the Simplified-Advanced Encryption Standard (S-AES) algorithm is presented. Also, a quantum Grover attack is modeled on the proposed quantum S-AES. First, quantum circuits for the main components of S-AES in the finite field F2[x]/(x4 + x + 1), are constructed. Then, the constructed circuits are put together to form a quantum version of S-AES. A C-NOT synthesis is used to decompose some of the functions to reduce the number of the needed qubits. The quantum S-AES is integrated into a black-box queried by Grover's algorithm. A new approach is proposed to uniquely recover the secret key when Grover attack is applied. The entire work is simulated and tested on a quantum mechanics simulator. The complexity analysis shows that a block cipher can be designed as a quantum circuit with a polynomial cost. In addition, the secret key is recovered in quadratic speedup as promised by Grover's algorithm.
Implantable medical devices (IMDs) typically rely on proprietary protocols to wirelessly communicate with external device programmers. In this paper, we fully reverse engineer the proprietary protocol between a device programmer and a widely used commercial neurostimulator from one of the leading IMD manufacturers. For the reverse engineering, we follow a black-box approach and use inexpensive hardware equipment. We document the message format and the protocol state-machine, and show that the transmissions sent over the air are neither encrypted nor authenticated. Furthermore, we conduct several software radio-based attacks that could compromise the safety and privacy of patients, and investigate the feasibility of performing these attacks in real scenarios. Motivated by our findings, we propose a security architecture that allows for secure data exchange between the device programmer and the neurostimulator. It relies on using a patient»s physiological signal for generating a symmetric key in the neurostimulator, and transporting this key from the neurostimulator to the device programmer through a secret out-of-band (OOB) channel. Our solution allows the device programmer and the neurostimulator to agree on a symmetric session key without these devices needing to share any prior secrets; offers an effective and practical balance between security and permissive access in emergencies; requires only minor hardware changes in the devices; adds minimal computation and communication overhead; and provides forward and backward security. Finally, we implement a proof-of-concept of our solution.