Biblio
We consider the problem of attack detection for IoT networks based only on passively collected network parameters. For the first time in the literature, we develop a blind attack detection method based on data conformity evaluation. Network parameters collected passively, are converted to their conformity values through iterative projections on refined L1-norm tensor subspaces. We demonstrate our algorithmic development in a case study for a simulated star topology network. Type of attack, affected devices, as well as, attack time frame can be easily identified.
This paper describes MADHAT (Multidimensional Anomaly Detection fusing HPC, Analytics, and Tensors), an integrated workflow that demonstrates the applicability of HPC resources to the problem of maintaining cyber situational awareness. MADHAT combines two high-performance packages: ENSIGN for large-scale sparse tensor decompositions and HAGGLE for graph analytics. Tensor decompositions isolate coherent patterns of network behavior in ways that common clustering methods based on distance metrics cannot. Parallelized graph analysis then uses directed queries on a representation that combines the elements of identified patterns with other available information (such as additional log fields, domain knowledge, network topology, whitelists and blacklists, prior feedback, and published alerts) to confirm or reject a threat hypothesis, collect context, and raise alerts. MADHAT was developed using the collaborative HPC Architecture for Cyber Situational Awareness (HACSAW) research environment and evaluated on structured network sensor logs collected from Defense Research and Engineering Network (DREN) sites using HPC resources at the U.S. Army Engineer Research and Development Center DoD Supercomputing Resource Center (ERDC DSRC). To date, MADHAT has analyzed logs with over 650 million entries.
There is an inevitable trade-off between spatial and spectral resolutions in optical remote sensing images. A number of data fusion techniques of multimodal images with different spatial and spectral characteristics have been developed to generate optical images with both spatial and spectral high resolution. Although some of the techniques take the spectral and spatial blurring process into account, there is no method that attempts to retrieve an optical image with both spatial and spectral high resolution, a spectral blurring filter and a spectral response simultaneously. In this paper, we propose a new framework of spatial resolution enhancement by a fusion of multiple optical images with different characteristics based on tensor decomposition. An optical image with both spatial and spectral high resolution, together with a spatial blurring filter and a spectral response, is generated via canonical polyadic (CP) decomposition of a set of tensors. Experimental results featured that relatively reasonable results were obtained by regularization based on nonnegativity and coupling.
CANDECOMP/PARAFAC (CP) decomposition has been widely used to deal with multi-way data. For real-time or large-scale tensors, based on the ideas of randomized-sampling CP decomposition algorithm and online CP decomposition algorithm, a novel CP decomposition algorithm called randomized online CP decomposition (ROCP) is proposed in this paper. The proposed algorithm can avoid forming full Khatri-Rao product, which leads to boost the speed largely and reduce memory usage. The experimental results on synthetic data and real-world data show the ROCP algorithm is able to cope with CP decomposition for large-scale tensors with arbitrary number of dimensions. In addition, ROCP can reduce the computing time and memory usage dramatically, especially for large-scale tensors.
Homomorphic signatures can provide a credential of a result which is indeed computed with a given function on a data set by an untrusted third party like a cloud server, when the input data are stored with the signatures beforehand. Boneh and Freeman in EUROCRYPT2011 proposed a homomorphic signature scheme for polynomial functions of any degree, however the scheme is not based on the normal short integer solution (SIS) problems as its security assumption. In this paper, we show a homomorphic signature scheme for quadratic polynomial functions those security assumption is based on the normal SIS problems. Our scheme constructs the signatures of multiplication as tensor products of the original signature vectors of input data so that homomorphism holds. Moreover, security of our scheme is reduced to the hardness of the SIS problems respect to the moduli such that one modulus is the power of the other modulus. We show the reduction by constructing solvers of the SIS problems respect to either of the moduli from any forger of our scheme.
Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few (\textbackslashtextless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- \textbackslashtextbar\textbackslashtextbar
Tensor decompositions, which are factorizations of multi-dimensional arrays, are becoming increasingly important in large-scale data analytics. A popular tensor decomposition algorithm is Canonical Decomposition/Parallel Factorization using alternating least squares fitting (CP-ALS). Tensors that model real-world applications are often very large and sparse, driving the need for high performance implementations of decomposition algorithms, such as CP-ALS, that can take advantage of many types of compute resources. In this work we present ReFacTo, a heterogeneous distributed tensor decomposition implementation based on DeFacTo, an existing distributed memory approach to CP-ALS. DFacTo reduces the critical routine of CP-ALS to a series of sparse matrix-vector multiplications (SpMVs). ReFacTo leverages GPUs within a cluster via MPI to perform these SpMVs and uses OpenMP threads to parallelize other routines. We evaluate the performance of ReFacTo when using NVIDIA's GPU-based cuSPARSE library and compare it to an alternative implementation that uses Intel's CPU-based Math Kernel Library (MKL) for the SpMV. Furthermore, we provide a discussion of the performance challenges of heterogeneous distributed tensor decompositions based on the results we observed. We find that on up to 32 nodes, the SpMV of ReFacTo when using MKL is up to 6.8× faster than ReFacTo when using cuSPARSE.
Tensors are a multi-linear generalization of matrices to their d-way counterparts, and are receiving intense interest recently due to their natural representation of high-dimensional data and the availability of fast tensor decomposition algorithms. Given the input-output data of a nonlinear system/circuit, this paper presents a nonlinear model identification and simulation framework built on top of Volterra series and its seamless integration with tensor arithmetic. By exploiting partially-symmetric polyadic decompositions of sparse Toeplitz tensors, the proposed framework permits a pleasantly scalable way to incorporate high-order Volterra kernels. Such an approach largely eludes the curse of dimensionality and allows computationally fast modeling and simulation beyond weakly nonlinear systems. The black-box nature of the model also hides structural information of the system/circuit and encapsulates it in terms of compact tensors. Numerical examples are given to verify the efficacy, efficiency and generality of this tensor-based modeling and simulation framework.