Biblio
Filters: Keyword is policy-based governance [Clear All Filters]
BlockAM: An Adaptive Middleware for Intelligent Data Storage Selection for Internet of Things. 2020 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPS). :61—71.
.
2020. Current Internet of Things (IoT) infrastructures, with its massive data requirements, rely on cloud storage: however, usage of a single cloud storage can place limitations on the IoT applications in terms of service requirements (performance, availability, security etc.). Multi-cloud storage architecture has been emerged as a promising infrastructure to solve this problem, but this approach has limited impact due to the lack of differentiation between competing cloud solutions. Multiple decentralized storage solutions (e.g., based on blockchains) are entering the market with distinct characteristics in terms of architecture, performance, security and availability and at a lower price compared to cloud storage. In this work, we introduce BlockAM: an adaptive middleware for the intelligent selection of storage technology for IoT applications, which jointly considers the cloud, multi-cloud and decentralized storage technologies to store large-scale IoT data. We model the cost-minimization storage selection problem and propose two heuristic algorithms: Dynamic Programming (DP) based algorithm and Greedy Style (GS) algorithm, for optimizing the choice of data storage based on IoT application's service requirements. We also employ blockchain to store IoT data on-chain in order to provide data integrity, auditability and accountability to the middleware architecture. Comparisons among the heuristic algorithms are conducted through extensive experiments, which demonstrates that DP heuristic and GS heuristic achieve up to 92% and 80% accuracy respectively. Moreover, the price associated with a specific IoT application data storage decrease by up to 31.2% by employing our middleware solution.
Performance Study of the Robot Operating System 2 with QoS and Cyber Security Settings. 2020 IEEE International Systems Conference (SysCon). :1—6.
.
2020. Throughout the Department of Defense, there are ongoing efforts to increase cybersecurity and improve data transfer in unmanned robotic systems (UxS). This paper explores the performance of the Robot Operating System (ROS) 2, which is built with the Data Distribution Service (DDS) standard as a middleware. Based on how quality of service (QoS) parameters are defined in the robotic middleware interface, it is possible to implement strict delivery requirements to different nodes on a dynamic nodal network with multiple unmanned systems connected. Through this research, different scenarios with varying QoS settings were implemented and compared to baseline values to help illustrate the impact of latency and throughput on data flow. DDS security settings were also enabled to help understand the cost of overhead and performance when secured data is compared to plaintext baseline values. Our experiments were performed using a basic ROS 2 network consisting of two nodes (one publisher and one subscriber). Our experiments showed a measurable latency and throughput change between different QoS profiles and security settings. We analyze the trends and tradeoffs associated with varying QoS and security settings. This paper provides performance data points that can be used to help future researchers and developers make informative choices when using ROS 2 for UxS.
Design Of TT amp;C Resource Automatic Scheduling Interface Middleware With High Concurrency and Security. 2020 International Conference on Information Science, Parallel and Distributed Systems (ISPDS). :171—176.
.
2020. In order to significantly improve the reliable interaction and fast processing when TT&C(Tracking, Telemetry and Command) Resource Scheduling and Management System (TRSMS) communicate with external systems which are diverse, multiple directional and high concurrent, this paper designs and implements a highly concurrent and secure middleware for TT&C Resource Automatic Scheduling Interface (TRASI). The middleware designs memory pool, data pool, thread pool and task pool to improve the efficiency of concurrent processing, uses the rule dictionary, communication handshake and wait retransmission mechanism to ensure the data interaction security and reliability. This middleware can effectively meet the requirements of TRASI for data exchange with external users and system, significantly improve the data processing speed and efficiency, and promote the information technology and automation level of Aerospace TT&C Network Management Center (TNMC).
Implementing Security and Trust in IoT/M2M using Middleware. 2020 International Conference on Information Networking (ICOIN). :726—731.
.
2020. Machine to Machine (M2M) a sub area of Internet of Things (IoT) will link billions of devices or things distributed around the world using the Internet. These devices when connected exchange information obtained from the environment such as temperature or humidity from industrial or residential control process. Information Security (IS) and Trust are one of the fundamental points for users and the industry to accept the use of these devices with Confidentiality, Integrity, Availability and Authenticity. The key reason is that most of these devices use wireless media especially in residential and smart city environments. The overall goal of this work is to implement a Middleware Security to improve Safety and Security between the control network devices used in IoT/M2M and the Internet for residential or industrial environments. This implementation has been tested with different protocols as CoAP and MQTT, a microcomputer with free Real-Time Operating System (RTOS) implemented in a Raspberry Pi Gateway Access Point (RGAP), Network Address Translator (NAT), IPTable firewall and encryption is part of this implementation for secure data transmission
Unbounded Key-Policy Attribute-Based Encryption with Black-Box Traceability. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1655—1663.
.
2020. Attribute-based encryption received widespread attention as soon as it was proposed. However, due to its specific characteristics, some restrictions on attribute set are not flexible enough in actual operation. In addition, since access authorities are determined according to users' attributes, users sharing the same attributes are difficult to be distinguished. Once a malicious user makes illicit gains by their decryption authorities, it is difficult to track down specific user. This paper follows practical demands to propose a more flexible key-policy attribute-based encryption scheme with black-box traceability. The scheme has a constant size of public parameters which can be utilized to construct attribute-related parameters flexibly, and the method of traitor tracing in broadcast encryption is introduced to achieve effective malicious user tracing. In addition, the security and feasibility can be proved by the security proofs and performance evaluation in this paper.
Multi-Authority Attribute Based Encryption With Policy-hidden and Accountability. 2020 International Conference on Space-Air-Ground Computing (SAGC). :95—96.
.
2020. In this paper, an attribute-based encryption scheme with policy hidden and key tracing under multi-authority is proposed. In our scheme, the access structure is embedded into the ciphertext implicitly and the attacker cannot gain user's private information by access structure. The key traceability is realized under multi-authority and collusion is prevented. Finally, based on the DBDH security model, it is proved that this scheme can resist the plaintext attack under the standard model.
Ciphertext-Policy Attribute-Based Encryption with Multi-keyword Search over Medical Cloud Data. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :277—284.
.
2020. Over the years, public health has faced a large number of challenges like COVID-19. Medical cloud computing is a promising method since it can make healthcare costs lower. The computation of health data is outsourced to the cloud server. If the encrypted medical data is not decrypted, it is difficult to search for those data. Many researchers have worked on searchable encryption schemes that allow executing searches on encrypted data. However, many existing works support single-keyword search. In this article, we propose a patient-centered fine-grained attribute-based encryption scheme with multi-keyword search (CP-ABEMKS) for medical cloud computing. First, we leverage the ciphertext-policy attribute-based technique to construct trapdoors. Then, we give a security analysis. Besides, we provide a performance evaluation, and the experiments demonstrate the efficiency and practicality of the proposed CP-ABEMKS.
The Enforcement of Context Aware System Security Protocols with the Aid of Multi Factor Authentication. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :740–744.
.
2020. In this paper, an attempt has been made to describe Kerberos authentication with multi factor authentication in context aware systems. Multi factor authentication will make the framework increasingly secure and dependable. The Kerberos convention is one of the most generally utilized security conventions on the planet. The security conventions of Kerberos have been around for a considerable length of time for programmers and other malware to Figure out how to sidestep it. This has required a quick support of the Kerberos convention to make it progressively dependable and productive. Right now, endeavor to help explain this by strengthening Kerberos with the assistance of multifaceted verification.
Preventing the Insider – Blocking USB Write Capabilities to Prevent IP Theft. 2020 SoutheastCon. 2:1–7.
.
2020. The Edward Snowden data breach of 2013 clearly illustrates the damage that insiders can do to an organization. An insider's knowledge of an organization allows them legitimate access to the systems where valuable information is stored. Because they belong within an organizations security perimeter, an insider is inherently difficult to detect and prevent information leakage. To counter this, proactive measures must be deployed to limit the ability of an insider to steal information. Email monitoring at the edge is can easily be monitored for large file exaltation. However, USB drives are ideally suited for large-scale file extraction in a covert manner. This work discusses a process for disabling write-access to USB drives while allowing read-access. Allowing read-access for USB drives allows an organization to adapt to the changing security posture of the organization. People can still bring USB devices into the organization and read data from them, but exfiltration is more difficult.
Novel Design of Hardware Trojan: A Generic Approach for Defeating Testability Based Detection. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :162–173.
.
2020. Hardware design, especially the very large scale integration(VLSI) and systems on chip design(SOC), utilizes many codes from third-party intellectual property (IP) providers and former designers. Hardware Trojans (HTs) are easily inserted in this process. Recently researchers have proposed many HTs detection techniques targeting the design codes. State-of-art detections are based on the testability including Controllability and Observability, which are effective to all HTs from TrustHub, and advanced HTs like DeTrust. Meanwhile, testability based detections have advantages in the timing complexity and can be easily integrated into recently industrial verification. Undoubtedly, the adversaries will upgrade their designs accordingly to evade these detection techniques. Designing a variety of complex trojans is a significant way to perfect the existing detection, therefore, we present a novel design of HTs to defeat the testability based detection methods, namely DeTest. Our approach is simple and straight forward, yet it proves to be effective at adding some logic. Without changing HTs malicious function, DeTest decreases controllability and observability values to about 10% of the original, which invalidates distinguishers like clustering and support vector machines (SVM). As shown in our practical attack results, adversaries can easily use DeTest to upgrade their HTs to evade testability based detections. Combined with advanced HTs design techniques like DeTrust, DeTest can evade previous detecions, like UCI, VeriTrust and FANCI. We further discuss how to extend existing solutions to reduce the threat posed by DeTest.
Visible-Imperceptible Image Watermarking based on Reversible Data Hiding with Contrast Enhancement. 2020 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE). :29–34.
.
2020. Currently the use and production of multimedia data such as digital images have increased due to its wide use within smart devices and open networks. Although this has some advantages, it has generated several issues related to the infraction of intellectual property. Digital image watermarking is a promissory solution to solve these issues. Considering the need to develop mechanisms to improve the information security as well as protect the intellectual property of the digital images, in this paper we propose a novel visible-imperceptible watermarking based on reversible data hiding with contrast enhancement. In this way, a watermark logo is embedded in the spatial domain of the original image imperceptibly, so that the logo is revealed applying reversible data hiding increasing the contrast of the watermarked image and the same time concealing a great amount of data bits, which are extracted and the watermarked image restored to its original conditions using the reversible functionality. Experimental results show the effectiveness of the proposed algorithm. A performance comparison with the current state-of-the-art is provided.
FPGA Accelerated Embedded System Security Through Hardware Isolation. 2020 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1–6.
.
2020. Modern embedded systems include on-chip FPGA along with processors to meet the high computation demand by providing flexibility to users to add custom hardware accelerators. Any confidential or sensitive information may be processed by those custom accelerators or hardware Intellectual Properties (IPs). Existing accelerator usage models in embedded systems do not prevent illegal access to the IPs, which can be a severe security breach. In this paper, we present a hardware-software co-design approach for secured FPGA accelerated embedded system design. Our proposed security framework inherits Mandatory Access Control (MAC) based authentication policies running at software down to hardware accelerators in FPGA. It ensures secured processing of confidential data in the hardware to prevent software originated attacks at hardware IPs and information leaks. We have implemented a prototype of our proposed framework, which shows that it can be easily integrated while designing an embedded system with custom accelerator IPs. The experimental results show that the proposed framework establishes secured hardware execution with a negligible amount of area and performance overhead.
Design and Implementation of a Secure Physical Unclonable Function In FPGA. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). :1083–1089.
.
2020. A Field Programmable Gate Array (FPGA) is a digital Integrated Circuit made up of interconnected functional blocks, which can be programmed by the end-user to perform required logic functions. As FPGAs are re-programmable, partially re-configurable and have lowertime to market, FPGA has become a vital component in the field of electronics. FPGAs are undergoing many security issues as the adversaries are trying to make profits by replicating the original design, without any investment. The major security issues are cloning, counterfeiting, reverse engineering, Physical tampering, and insertion of malicious components, etc. So, there is a need for security of FPGAs. A Secret key must be embedded in an IC, to provide identification and authentication to it. Physical Unclonable Functions (PUFs) can provide these secret keys, by using the physical properties of the chip. These physical properties are not reproducible even by the manufacturer. Hence the responses produced by the PUF are unique for every individual chip. The method of generating unique binary signatures helps in cryptographic key generation, digital rights management, Intellectual Property (IP) protection, IC counterfeit prevention, and device authentication. The PUFs are very promising in signature generation in the field of hardware security. In this paper, the secret binary responses is generated with the help of a delay based Ring Oscillator PUF, which does not use a clock circuit in its architecture.
SS3: Security-Aware Vendor-Constrained Task Scheduling for Heterogeneous Multiprocessor System-on-Chips. 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC). :1–6.
.
2020. Design for trust approaches can protect an MPSoC system from hardware Trojan attack due to the high penetration of third-party intellectual property. However, this incurs significant design cost by purchasing IP cores from various IP vendors, and the IP vendors providing particular IP are always limited, making these approaches unable to be performed in practice. This paper treats IP vendor as constraint, and tasks are scheduled with a minimized security constraint violations, furthermore, the area of MPSoC is also optimized during scheduling. Experimental results demonstrate the effectiveness of our proposed algorithm, by reducing 0.37% security constraint violations.
Pythia: Intellectual Property Verification in Zero-Knowledge. 2020 57th ACM/IEEE Design Automation Conference (DAC). :1–6.
.
2020. The contemporary IC supply chain depends heavily on third-party intellectual property (3PIP) that is integrated to in-house designs. As the correctness of such 3PIPs should be verified before integration, one important challenge for 3PIP vendors is proving the functionality of their designs while protecting the privacy of circuit implementations. In this work, we present Pythia that employs zero-knowledge proofs to enable vendors convince integrators about the functionality of a circuit without disclosing its netlist. Pythia automatically encodes netlists into zero knowledge-friendly format, evaluates them on different inputs, and proves correctness of outputs. We evaluate Pythia using the ISCAS'85 benchmark suite.
Protecting the Intellectual Property of Deep Neural Networks with Watermarking: The Frequency Domain Approach. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :402–409.
.
2020. Similar to other digital assets, deep neural network (DNN) models could suffer from piracy threat initiated by insider and/or outsider adversaries due to their inherent commercial value. DNN watermarking is a promising technique to mitigate this threat to intellectual property. This work focuses on black-box DNN watermarking, with which an owner can only verify his ownership by issuing special trigger queries to a remote suspicious model. However, informed attackers, who are aware of the watermark and somehow obtain the triggers, could forge fake triggers to claim their ownerships since the poor robustness of triggers and the lack of correlation between the model and the owner identity. This consideration calls for new watermarking methods that can achieve better trade-off for addressing the discrepancy. In this paper, we exploit frequency domain image watermarking to generate triggers and build our DNN watermarking algorithm accordingly. Since watermarking in the frequency domain is high concealment and robust to signal processing operation, the proposed algorithm is superior to existing schemes in resisting fraudulent claim attack. Besides, extensive experimental results on 3 datasets and 8 neural networks demonstrate that the proposed DNN watermarking algorithm achieves similar performance on functionality metrics and better performance on security metrics when compared with existing algorithms.
Adversarial Deception in Deep Learning: Analysis and Mitigation. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :236–245.
.
2020. The burgeoning success of deep learning has raised the security and privacy concerns as more and more tasks are accompanied with sensitive data. Adversarial attacks in deep learning have emerged as one of the dominating security threats to a range of mission-critical deep learning systems and applications. This paper takes a holistic view to characterize the adversarial examples in deep learning by studying their adverse effect and presents an attack-independent countermeasure with three original contributions. First, we provide a general formulation of adversarial examples and elaborate on the basic principle for adversarial attack algorithm design. Then, we evaluate 15 adversarial attacks with a variety of evaluation metrics to study their adverse effects and costs. We further conduct three case studies to analyze the effectiveness of adversarial examples and to demonstrate their divergence across attack instances. We take advantage of the instance-level divergence of adversarial examples and propose strategic input transformation teaming defense. The proposed defense methodology is attack-independent and capable of auto-repairing and auto-verifying the prediction decision made on the adversarial input. We show that the strategic input transformation teaming defense can achieve high defense success rates and are more robust with high attack prevention success rates and low benign false-positive rates, compared to existing representative defense methods.
Trust and Packet Loss Aware Routing (TPLAR) for Intrusion Detection in WSNs. 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN). :386–391.
.
2020. In this paper, a new intrusion detection mechanism is proposed based on Trust and Packet Loss Rate at Sensor Node in WSNs. To find the true malicious nodes, the proposed mechanism performs a deep analysis on the packet loss. Two independent metrics such as buffer capacity metric and residual energy metric are considered for packet loss rate evaluation. Further, the trust evaluation also considers the basic communication interactions between sensor nodes. Based on these three metrics, a new composite metric called Packet Forwarding Probability (PFP) is derived through which the malicious nodes are identified. Simulation experiments are conducted over the proposed mechanism and the performance is evaluated through False Positive Rate (FPR) and Malicious Detection Rate (MDR). The results declare that the proposed mechanism achieves a better performance compared to the conventional approaches.
Deep Learning-Based False Sensor Data Detection for Battery Energy Storage Systems. 2020 IEEE CyberPELS (CyberPELS). :1–6.
.
2020. Battery energy storage systems are facing risks of unreliable battery sensor data which might be caused by sensor faults in an embedded battery management system, communication failures, and even cyber-attacks. It is crucial to evaluate the trustworthiness of battery sensor data since inaccurate sensor data could lead to not only serious damages to battery energy storage systems, but also threaten the overall reliability of their applications (e.g., electric vehicles or power grids). This paper introduces a battery sensor data trust framework enabling detecting unreliable data using a deep learning algorithm. The proposed sensor data trust mechanism could potentially improve safety and reliability of the battery energy storage systems. The proposed deep learning-based battery sensor fault detection algorithm is validated by simulation studies using a convolutional neural network.
Trust Evaluation for Securing Compromised data Aggregation against the Collusion Attack in WSN. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). :1–5.
.
2020. With a storage space limit on the sensors, WSN has some drawbacks related to bandwidth and computational skills. This limited resources would reduce the amount of data transmitted across the network. For this reason, data aggregation is considered as a new process. Iterative filtration (IF) algorithms, which provide trust assessment to the various sources from which the data aggregation has been performed, are efficient in the present data aggregation algorithms. Trust assessment is done with weights from the simple average method to aggregation, which treats attack susceptibility. Iteration filter algorithms are stronger than the ordinary average, but they do not handle the current advanced attack that takes advantage of false information with many compromise nodes. Iterative filters are strengthened by an initial confidence estimate to track new and complex attacks, improving the solidity and accuracy of the IF algorithm. The new method is mainly concerned with attacks against the clusters and not against the aggregator. In this process, if an aggregator is attacked, the current system fails, and the information is eventually transmitted to the aggregator by the cluster members. This problem can be detected when both cluster members and aggregators are being targeted. It is proposed to choose an aggregator which chooses a new aggregator according to the remaining maximum energy and distance to the base station when an aggregator attack is detected. It also save time and energy compared to the current program against the corrupted aggregator node.
Trust based Security framework for IoT data. 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP). :1–5.
.
2020. With an incredible growth in MEMS and Internet, IoT has developed to an inevitable invention and resource for human needs. IoT reframes the communication and created a new way of machine to machine communication. IoT utilizes smart sensor to monitor and track environmental changes in any area of interest. The high volume of sensed information is processed, formulated and presented to the user for decision making. In this paper a model is designed to perform trust evaluation and data aggregation with confidential transmission of secured information in to the network and enables higher secure and reliable data transmission for effective analysis and decision making. The Sensors in IoT devices, senses the same information and forwards redundant data in to the network. This results in higher network congestion and causes transmission overhead. This could be control by introducing data aggregation. A gateway sensor node can act as aggregator and a forward unique information to the base station. However, when the network is adulterated with malicious node, these malicious nodes tend to injects false data in to the network. In this paper, a trust based malicious node detection technique has been introduced to isolate the malicious node from forwarding false information into the network. Simulation results proves the proposed protocol can be used to reduce malicious attack with increased throughput and performance.
A Trust-based Message Passing Algorithm against Persistent SSDF. 2020 IEEE 20th International Conference on Communication Technology (ICCT). :1112–1115.
.
2020. As a key technology in cognitive radio, cooperative spectrum sensing has been paid more and more attention. In cooperative spectrum sensing, multi-user cooperative spectrum sensing can effectively alleviate the performance degradation caused by multipath effect and shadow fading, and improve the spectrum utilization. However, as there may be malicious users in the cooperative sensing users, sending forged false messages to the fusion center or neighbor nodes to mislead them to make wrong judgments, which will greatly reduce the spectrum utilization. To solve this problem, this paper proposes an intelligent anti spectrum sensing data falsification (SSDF) attack algorithm using trust-based non consensus message passing algorithm. In this scheme, only one perception is needed, and the historical propagation path of each message is taken as the basis to calculate the reputation of each cognitive user. Every time a node receives different messages from the same cognitive user, there must be malicious users in its propagation path. We reward the nodes that appear more times in different paths with reputation value, and punish the nodes that appear less. Finally, the real value of the tampered message is restored according to the calculated reputation value. The MATLAB results show that the proposed scheme has a high recovery rate for messages and can identify malicious users in the network at the same time.
A Feedback-Driven Lightweight Reputation Scheme for IoV. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1060–1068.
.
2020. Most applications of Internet of Vehicles (IoVs) rely on collaboration between nodes. Therefore, false information flow in-between these nodes poses the challenging trust issue in rapidly moving IoV nodes. To resolve this issue, a number of mechanisms have been proposed in the literature for the detection of false information and establishment of trust in IoVs, most of which employ reputation scores as one of the important factors. However, it is critical to have a robust and consistent scheme that is suitable to aggregate a reputation score for each node based on the accuracy of the shared information. Such a mechanism has therefore been proposed in this paper. The proposed system utilises the results of any false message detection method to generate and share feedback in the network, this feedback is then collected and filtered to remove potentially malicious feedback in order to produce a dynamic reputation score for each node. The reputation system has been experimentally validated and proved to have high accuracy in the detection of malicious nodes sending false information and is robust or negligibly affected in the presence of spurious feedback.
Blockchain Based Decentralized Trust Management framework. 2020 International Wireless Communications and Mobile Computing (IWCMC). :2210–2215.
.
2020. The blockchain is a storage technology and transmission of information, transparent, secure, and operating without central control. In this paper, we propose a new decentralized trust management and cooperation model where data is shared via blockchain and we explore the revenue distribution under different consensus schemes. To reduce the power calculation with respect to the control mechanism, our proposal adopts the possibility of Proof on Trust (PoT) and Proof of proof-of-stake based trust to replace the proof of work (PoW) scheme, to carry out the mining and storage of new data blocks. To detect nodes with malicious behavior to provide false system information, the trust updating algorithm is proposed..
Trust or Not?: A Computational Robot-Trusting-Human Model for Human-Robot Collaborative Tasks 2020 IEEE International Conference on Big Data (Big Data). :5689–5691.
.
2020. The trust of a robot in its human partner is a significant issue in human-robot interaction, which is seldom explored in the field of robotics. This study addresses a critical issue of robots' trust in humans during the human-robot collaboration process based on the data of human motions, past interactions of the human-robot pair, and the human's current performance in the co-carry task. The trust level is evaluated dynamically throughout the collaborative task that allows the trust level to change if the human performs false positive actions, which can help the robot avoid making unpredictable movements and causing injury to the human. Experimental results showed that the robot effectively assisted the human in collaborative tasks through the proposed computational trust model.