Visible to the public Biblio

Filters: Keyword is hardware attacks  [Clear All Filters]
2020-09-04
Sree Ranjani, R, Nirmala Devi, M.  2018.  A Novel Logical Locking Technique Against Key-Guessing Attacks. 2018 8th International Symposium on Embedded Computing and System Design (ISED). :178—182.
Logical locking is the most popular countermeasure against the hardware attacks like intellectual property (IP) piracy, Trojan insertion and illegal integrated circuit (IC) overproduction. The functionality of the design is locked by the added logics into the design. Thus, the design is accessible only to the authorized users by applying the valid keys. However, extracting the secret key of the logically locked design have become an extensive effort and it is commonly known as key guessing attacks. Thus, the main objective of the proposed technique is to build a secured hardware against attacks like Brute force attack, Hill climbing attack and path sensitization attacks. Furthermore, the gates with low observability are chosen for encryption, this is to obtain an optimal output corruption of 50% Hamming distance with minimal design overhead and implementation complexity. The experimental results are validated on ISCAS'85 benchmark circuits, with a highly secured locking mechanism.
2018-05-01
Dofe, Jaya, Gu, Peng, Stow, Dylan, Yu, Qiaoyan, Kursun, Eren, Xie, Yuan.  2017.  Security Threats and Countermeasures in Three-Dimensional Integrated Circuits. Proceedings of the on Great Lakes Symposium on VLSI 2017. :321–326.

Existing works on Three-dimensional (3D) hardware security focus on leveraging the unique 3D characteristics to address the supply chain attacks that exist in 2D design. However, 3D ICs introduce specific and unexplored challenges as well as new opportunities for managing hardware security. In this paper, we analyze new security threats unique to 3D ICs. The corresponding attack models are summarized for future research. Furthermore, existing representative countermeasures, including split manufacturing, camouflaging, transistor locking, techniques against thermal signal based side-channel attacks, and network-on-chip based shielding plane (NoCSIP) for different hardware threats are reviewed and categorized. Moreover, preliminary countermeasures are proposed to thwart TSV-based hardware Trojan insertion attacks.

2017-04-20
Dofe, J., Frey, J., Yu, Q..  2016.  Hardware security assurance in emerging IoT applications. 2016 IEEE International Symposium on Circuits and Systems (ISCAS). :2050–2053.
The Internet of Things (IoT) offers a more advanced service than a single device or an isolated system, as IoT connects diverse components, such as sensors, actuators, and embedded devices through the internet. As predicted by Cisco, there will be 50 billion IoT connected devices by 2020. Integration of such a tremendous number of devices into IoT potentially brings in a new concern, system security. In this work, we review two typical hardware attacks that can harm the emerging IoT applications. As IoT devices typically have limited computation power and need to be energy efficient, sophisticated cryptographic algorithms and authentication protocols are not suitable for every IoT device. To simultaneously thwart hardware Trojan and side-channel analysis attacks, we propose a low-cost dynamic permutation method for IoT devices. Experimental results show that the proposed method achieves 5.8X higher accumulated partial guessing entropy than the baseline, thus strengthening the IoT processing unit against hardware attacks.