Biblio
We consider the possibility of detecting malicious behaviors of the advanced persistent threat (APT) at endpoints during incident response or forensics investigations. Specifically, we study the case where third-party sensors are not available; our observables are obtained solely from inherent digital artifacts of Windows operating systems. What is of particular interest is an artifact called the Application Compatibility Cache (Shimcache). As it is not apparent from the Shimcache when a file has been executed, we propose an algorithm of estimating the time of file execution up to an interval. We also show guarantees of the proposed algorithm's performance and various possible extensions that can improve the estimation. Finally, combining this approach with methods of machine learning, as well as information from other digital artifacts, we design a prototype system called XTEC and demonstrate that it can help hunt for the APT in a real-world case study.
The use of risk information can help software engineers identify software components that are likely vulnerable or require extra attention when testing. Some studies have shown that the requirements risk-based approaches can be effective in improving the effectiveness of regression testing techniques. However, the risk estimation processes used in such approaches can be subjective, time-consuming, and costly. In this research, we introduce a fuzzy expert system that emulates human thinking to address the subjectivity related issues in the risk estimation process in a systematic and an efficient way and thus further improve the effectiveness of test case prioritization. Further, the required data for our approach was gathered by employing a semi-automated process that made the risk estimation process less subjective. The empirical results indicate that the new prioritization approach can improve the rate of fault detection over several existing test case prioritization techniques, while reducing threats to subjective risk estimation.
The analysis of applied tasks and methods of entropy signal processing are carried out in this article. The theoretical comments about the specific schemes of special processors for the determination of probability and correlation activity are given. The perspective of the influence of probabilistic entropy of C. Shannon as cipher signal receivers is reviewed. Examples of entropy-manipulated signals and system characteristics of the proposed special processors are given.
As opposed to a traditional power grid, a smart grid can help utilities to save energy and therefore reduce the cost of operation. It also increases reliability of the system In smart grids the quality of monitoring and control can be adequately improved by incorporating computing and intelligent communication knowledge. However, this exposes the system to false data injection (FDI) attacks and the system becomes vulnerable to intrusions. Therefore, it is important to detect such false data injection attacks and provide an algorithm for the protection of system against such attacks. In this paper a comparison between three FDI detection methods has been made. An H2 control method has then been proposed to detect and control the false data injection on a 12th order model of a smart grid. Disturbances and uncertainties were added to the system and the results show the system to be fully controllable. This paper shows the implementation of a feedback controller to fully detect and mitigate the false data injection attacks. The controller can be incorporated in real life smart grid operations.
We are exploring new ways to analyze phishing attacks. To do this, we investigate the change in the dynamics of the power of phishing attacks. We also analyze the effectiveness of detection of phishing attacks. We are considering the possibility of using new tools for analyzing phishing attacks. As such tools, the methods of chaos theory and the ideology of wavelet coherence are used. The use of such analysis tools makes it possible to investigate the peculiarities of the phishing attacks occurrence, as well as methods for their identification effectiveness. This allows you to expand the scope of the analysis of phishing attacks. For analysis, we use real data about phishing attacks.
Several operational and economic factors impact the patching decisions of critical infrastructures. The constraints imposed by such factors could prevent organizations from fully remedying all of the vulnerabilities that expose their (critical) assets to risk. Therefore, an involved decision maker (e.g. security officer) has to strategically decide on the allocation of possible remediation efforts towards minimizing the inherent security risk. This, however, involves the use of comparative judgments to prioritize risks and remediation actions. Throughout this work, the security risk is quantified using the security metric Time-To-Compromise (TTC). Our main contribution is to provide a generic TTC estimator to comparatively assess the security posture of computer networks taking into account interdependencies between the network components, different adversary skill levels, and characteristics of (known and zero-day) vulnerabilities. The presented estimator relies on a stochastic TTC model and Monte Carlo simulation (MCS) techniques to account for the input data variability and inherent prediction uncertainties.
The method of choice the control parameters of a complex system based on estimates of the risks is proposed. The procedure of calculating the estimates of risks intended for a choice of rational managing directors of influences by an allocation of the group of the operating factors for the set criteria factor is considered. The purpose of choice of control parameters of the complex system is the minimization of an estimate of the risk of the functioning of the system by mean of a solution of a problem of search of an extremum of the function of many variables. The example of a choice of the operating factors in the sphere of intangible assets is given.
To manage cybersecurity risks in practice, a simple yet effective method to assess suchs risks for individual systems is needed. With time-to-compromise (TTC), McQueen et al. (2005) introduced such a metric that measures the expected time that a system remains uncompromised given a specific threat landscape. Unlike other approaches that require complex system modeling to proceed, TTC combines simplicity with expressiveness and therefore has evolved into one of the most successful cybersecurity metrics in practice. We revisit TTC and identify several mathematical and methodological shortcomings which we address by embedding all aspects of the metric into the continuous domain and the possibility to incorporate information about vulnerability characteristics and other cyber threat intelligence into the model. We propose $\beta$-TTC, a formal extension of TTC which includes information from CVSS vectors as well as a continuous attacker skill based on a $\beta$-distribution. We show that our new metric (1) remains simple enough for practical use and (2) gives more realistic predictions than the original TTC by using data from a modern and productively used vulnerability database of a national CERT.
Automotive systems have always been designed with safety in mind. In this regard, the functional safety standard, ISO 26262, was drafted with the intention of minimizing risk due to random hardware faults or systematic failure in design of electrical and electronic components of an automobile. However, growing complexity of a modern car has added another potential point of failure in the form of cyber or sensor attacks. Recently, researchers have demonstrated that vulnerability in vehicle's software or sensing units could enable them to remotely alter the intended operation of the vehicle. As such, in addition to safety, security should be considered as an important design goal. However, designing security solutions without the consideration of safety objectives could result in potential hazards. Consequently, in this paper we propose the notion of security for safety and show that by integrating safety conditions with our system-level security solution, which comprises of a modified Kalman filter and a Chi-squared detector, we can prevent potential hazards that could occur due to violation of safety objectives during an attack. Furthermore, with the help of a car-following case study, where the follower car is equipped with an adaptive-cruise control unit, we show that our proposed system-level security solution preserves the safety constraints and prevent collision between vehicle while under sensor attack.
To manage cybersecurity risks in practice, a simple yet effective method to assess suchs risks for individual systems is needed. With time-to-compromise (TTC), McQueen et al. (2005) introduced such a metric that measures the expected time that a system remains uncompromised given a specific threat landscape. Unlike other approaches that require complex system modeling to proceed, TTC combines simplicity with expressiveness and therefore has evolved into one of the most successful cybersecurity metrics in practice. We revisit TTC and identify several mathematical and methodological shortcomings which we address by embedding all aspects of the metric into the continuous domain and the possibility to incorporate information about vulnerability characteristics and other cyber threat intelligence into the model. We propose β-TTC, a formal extension of TTC which includes information from CVSS vectors as well as a continuous attacker skill based on a β-distribution. We show that our new metric (1) remains simple enough for practical use and (2) gives more realistic predictions than the original TTC by using data from a modern and productively used vulnerability database of a national CERT.
A new approach of a formalism of hybrid automatons has been proposed for the analysis of conflict processes between the information system and the information's security malefactor. An example of probability-based assessment on malefactor's victory has been given and the possibility to abstract from a specific type of probability density function for the residence time of parties to the conflict in their possible states. A model of the distribution of destructive informational influences in the information system to connect the process of spread of destructive information processes and the process of changing subjects' states of the information system has been proposed. An example of the destructive information processes spread analysis has been given.
Electronic power grid is a distributed network used for transferring electricity and power from power plants to consumers. Based on sensor readings and control system signals, power grid states are measured and estimated. As a result, most conventional attacks, such as denial-of-service attacks and random attacks, could be found by using the Kalman filter. However, false data injection attacks are designed against state estimation models. Currently, distributed Kalman filtering is proved effective in sensor networks for detection and estimation problems. Since meters are distributed in smart power grids, distributed estimation models can be used. Thus in this paper, we propose a diffusion Kalman filter for the power grid to have a good performance in estimating models and to effectively detect false data injection attacks.
In this paper, we investigate the Bayesian filtering problem for discrete nonlinear dynamical systems which contain random parameters. An augmented cubature Kalman filter (CKF) is developed to deal with the random parameters, where the state vector is enlarged by incorporating the random parameters. The corresponding number of cubature points is increased, so the augmented CKF method requires more computational complexity. However, the estimation accuracy is improved in comparison with that of the classical CKF method which uses the nominal values of the random parameters. An application to the mobile source localization with time difference of arrival (TDOA) measurements and random sensor positions is provided where the simulation results illustrate that the augmented CKF method leads to a superior performance in comparison with the classical CKF method.
A technique of finding a set of sequential circuit nodes in which Trojan Circuits (TC) may be implanted is suggested. The technique is based on applying the precise (not heuristic) random estimations of internal node observability and controllability. Getting the estimations we at the same time derive and compactly represent all sequential circuit full states (depending on input and state variables) in which of that TC may be switched on. It means we obtain precise description of TC switch on area for the corresponding internal node v. The estimations are computed with applying a State Transition Graph (STG) description, if we suppose that TC may be inserted out of the working area (out of the specification) of the sequential circuit. Reduced Ordered Binary Decision Diagrams (ROBDDs) for the combinational part and its fragments are applied for getting the estimations by means of operations on ROBDDs. Techniques of masking TCs are proposed. Masking sub-circuits overhead is appreciated.
Among many research efforts devoted to automated art investigations, the problem of quantification of literary style remains current. Meanwhile, linguists and computer scientists have tried to sort out texts according to their types or authors. We use the recently-introduced p-leader multifractal formalism to analyze a corpus of novels written for adults and young adults, with the goal of assessing if a difference in style can be found. Our results agree with the interpretation that novels written for young adults largely follow conventions of the genre, whereas novels written for adults are less homogeneous.
Generative policies enable devices to generate their own policies that are validated, consistent and conflict free. This autonomy is required for security policy generation to deal with the large number of smart devices per person that will soon become reality. In this paper, we discuss the research issues that have to be addressed in order for devices involved in security enforcement to automatically generate their security policies - enabling policy-based autonomous security management. We discuss the challenges involved in the task of automatic security policy generation, and outline some approaches based om machine learning that may potentially provide a solution to the same.
The vision of cyber-physical systems (CPSs) considered the Internet as the future communication network for such systems. A challenge with this regard is to provide high communication reliability, especially, for CPSs applications in critical infrastructures. Examples include smart grid applications with reliability requirements between 99-99.9999% [2]. Even though the Internet is a cost effective solution for such applications, the reliability of its end-to-end (e2e) paths is inadequate (often less than 99%). In this paper, we propose Reliable Multipath Communication Approach for Internet-based CPSs (RC4CPS). RC4CPS is an e2e approach that utilizes the inherent redundancy of the Internet and multipath (MP) transport protocols concept to improve reliability measured in terms of availability. It provides online monitoring and MP selection in order to fulfill the application specific reliability requirement. In addition, our MP selection considers e2e paths dependency and unavailability prediction to maximize the reliability gains of MP communication. Our results show that RC4CPS dynamic MP selection satisfied the reliability requirement along with selecting e2e paths with low dependency and unavailability probability.
Advanced Metering Infrastructure (AMI) have rapidly become a topic of international interest as governments have sponsored their deployment for the purposes of utility service reliability and efficiency, e.g., water and electricity conservation. Two problems plague such deployments. First is the protection of consumer privacy. Second is the problem of huge amounts of data from such deployments. A new architecture is proposed to address these problems through the use of Aggregators, which incorporate temporary data buffering and the modularization of utility grid analysis. These Aggregators are used to deliver anonymized summary data to the central utility while preserving billing and automated connection services.
This presents a new model to support empirical failure probability estimation for a software-intensive system. The new element of the approach is that it combines the results of testing using a simulated hardware platform with results from testing on the real platform. This approach addresses a serious practical limitation of a technique known as statistical testing. This limitation will be called the test time expansion problem (or simply the 'time problem'), which is that the amount of testing required to demonstrate useful levels of reliability over a time period T is many orders of magnitude greater than T. The time problem arises whether the aim is to demonstrate ultra-high reliability levels for protection system, or to demonstrate any (desirable) reliability levels for continuous operation ('high demand') systems. Specifically, the theoretical feasibility of a platform simulation approach is considered since, if this is not proven, questions of practical implementation are moot. Subject to the assumptions made in the paper, theoretical feasibility is demonstrated.