Biblio
Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few ({\textbackslash}textless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- {\textbackslash}textbar{\textbackslash}textbar
The ultrafast active cavitation imaging (UACI) based on plane wave can be implemented with high frame rate, in which adaptive beamforming technique was introduced to enhance resolutions and signal-to-noise ratio (SNR) of images. However, regular adaptive beamforming continuously updates the spatial filter for each sample point, which requires a huge amount of calculation, especially in the case of a high sampling rate, and, moreover, 3D imaging. In order to achieve UACI rapidly with satisfactory resolution and SNR, this paper proposed an adaptive beamforming on the basis of compressive sensing (CS), which can retain the quality of adaptive beamforming but reduce the calculating amount substantially. The results of simulations and experiments showed that comparing with regular adaptive beamforming, this new method successfully achieved about eightfold in time consuming.
A novel short-time Fourier transform (STFT) domain adaptive filtering scheme is proposed that can be easily combined with nonlinear post filters such as residual echo or noise reduction in acoustic echo cancellation. Unlike normal STFT subband adaptive filters, which suffers from aliasing artifacts due to its poor prototype filter, our scheme achieves good accuracy by exploiting the relationship between the linear convolution and the poor prototype filter, i.e., the STFT window function. The effectiveness of our scheme was confirmed through the results of simulations conducted to compare it with conventional methods.
This work presents a novel method to estimate natural expressed emotions in speech through binary acoustic modeling. Standard acoustic features are mapped to a binary value representation and a support vector regression model is used to correlate them with the three-continuous emotional dimensions. Three different sets of speech features, two based on spectral parameters and one on prosody are compared on the VAM corpus, a set of spontaneous dialogues from a German TV talk-show. The regression analysis, in terms of correlation coefficient and mean absolute error, show that the binary key modeling is able to successfully capture speaker emotion characteristics. The proposed algorithm obtains comparable results to those reported on the literature while it relies on a much smaller set of acoustic descriptors. Furthermore, we also report on preliminary results based on the combination of the binary models, which brings further performance improvements.
In this work we design and develop Montage for real-time multi-user formation tracking and localization by off-the-shelf smartphones. Montage achieves submeter-level tracking accuracy by integrating temporal and spatial constraints from user movement vector estimation and distance measuring. In Montage we designed a suite of novel techniques to surmount a variety of challenges in real-time tracking, without infrastructure and fingerprints, and without any a priori user-specific (e.g., stride-length and phone-placement) or site-specific (e.g., digitalized map) knowledge. We implemented, deployed and evaluated Montage in both outdoor and indoor environment. Our experimental results (847 traces from 15 users) show that the stride-length estimated by Montage over all users has error within 9cm, and the moving-direction estimated by Montage is within 20°. For realtime tracking, Montage provides meter-second-level formation tracking accuracy with off-the-shelf mobile phones.
Highly accurate indoor localization of smartphones is critical to enable novel location based features for users and businesses. In this paper, we first conduct an empirical investigation of the suitability of WiFi localization for this purpose. We find that although reasonable accuracy can be achieved, significant errors (e.g., 6 8m) always exist. The root cause is the existence of distinct locations with similar signatures, which is a fundamental limit of pure WiFi-based methods. Inspired by high densities of smartphones in public spaces, we propose a peer assisted localization approach to eliminate such large errors. It obtains accurate acoustic ranging estimates among peer phones, then maps their locations jointly against WiFi signature map subjecting to ranging constraints. We devise techniques for fast acoustic ranging among multiple phones and build a prototype. Experiments show that it can reduce the maximum and 80-percentile errors to as small as 2m and 1m, in time no longer than the original WiFi scanning, with negligible impact on battery lifetime.
Acoustic microscopy is characterized by relatively long scanning time, which is required for the motion of the transducer over the entire scanning area. This time may be reduced by using a multi-channel acoustical system which has several identical transducers arranged as an array and is mounted on a mechanical scanner so that each transducer scans only a fraction of the total area. The resulting image is formed as a combination of all acquired partial data sets. The mechanical instability of the scanner, as well as the difference in parameters of the individual transducers causes a misalignment of the image fractures. This distortion may be partially compensated for by the introduction of constant or dynamical signal leveling and data shift procedures. However, a reduction of the random instability component requires more advanced algorithms, including auto-adjustment of processing parameters. The described procedure was implemented into the prototype of an ultrasonic fingerprint reading system. The specialized cylindrical scanner provides a helical spiral lens trajectory which eliminates repeatable acceleration, reduces vibration and allows constant data flow on maximal rate. It is equipped with an array of four spherically focused 50 MHz acoustic lenses operating in pulse-echo mode. Each transducer is connected to a separate channel including pulser, receiver and digitizer. The output 3D data volume contains interlaced B-scans coming from each channel. Afterward, data processing includes pre-determined procedures of constant layer shift in order to compensate for the transducer displacement, phase shift and amplitude leveling for compensation of variation in transducer characteristics. Analysis of statistical parameters of individual scans allows adaptive eliminating of the axial misalignment and mechanical vibrations. Further 2D correlation of overlapping partial C-scans will realize an interpolative adjustment which essentially improves the output image. Implementation of this adaptive algorithm into a data processing sequence allows us to significantly reduce misreading due to hardware noise and finger motion during scanning. The system provides a high quality acoustic image of the fingerprint including different levels of information: fingerprint pattern, sweat porous locations, internal dermis structures. These additional features can effectively facilitate fingerprint based identification. The developed principles and algorithm implementations allow improved quality, stability and reliability of acoustical data obtained with the mechanical scanner, accommodating several transducers. General principles developed during this work can be applied to other configurations of advanced ultrasonic systems designed for various biomedical and NDE applications. The data processing algorithm, developed for a specific biometric task, can be adapted for the compensation of mechanical imperfections of the other devices.
This paper presents a novel and efficient audio signal recognition algorithm with limited computational complexity. As the audio recognition system will be used in real world environment where background noises are high, conventional speech recognition techniques are not directly applicable, since they have a poor performance in these environments. So here, we introduce a new audio recognition algorithm which is optimized for mechanical sounds such as car horn, telephone ring etc. This is a hybrid time-frequency approach which makes use of acoustic fingerprint for the recognition of audio signal patterns. The limited computational complexity is achieved through efficient usage of both time domain and frequency domain in two different processing phases, detection and recognition respectively. And the transition between these two phases is carried out through a finite state machine(FSM)model. Simulation results shows that the algorithm effectively recognizes audio signals within a noisy environment.
This article presents results of the recognition process of acoustic fingerprints from a noise source using spectral characteristics of the signal. Principal Components Analysis (PCA) is applied to reduce the dimensionality of extracted features and then a classifier is implemented using the method of the k-nearest neighbors (KNN) to identify the pattern of the audio signal. This classifier is compared with an Artificial Neural Network (ANN) implementation. It is necessary to implement a filtering system to the acquired signals for 60Hz noise reduction generated by imperfections in the acquisition system. The methods described in this paper were used for vessel recognition.
Sybil attack poses a serious threat to geographic routing. In this attack, a malicious node attempts to broadcast incorrect location information, identity and secret key information. A Sybil node can tamper its neighboring nodes for the purpose of converting them as malicious. As the amount of Sybil nodes increase in the network, the network traffic will seriously affect and the data packets will never reach to their destinations. To address this problem, researchers have proposed several schemes to detect Sybil attacks. However, most of these schemes assume costly setup such as the use of relay nodes or use of expensive devices and expensive encryption methods to verify the location information. In this paper, the authors present a method to detect Sybil attacks using Sequential Hypothesis Testing. The proposed method has been examined using a Greedy Perimeter Stateless Routing (GPSR) protocol with analysis and simulation. The simulation results demonstrate that the proposed method is robust against detecting Sybil attacks.
Sybil attack poses a serious threat to geographic routing. In this attack, a malicious node attempts to broadcast incorrect location information, identity and secret key information. A Sybil node can tamper its neighboring nodes for the purpose of converting them as malicious. As the amount of Sybil nodes increase in the network, the network traffic will seriously affect and the data packets will never reach to their destinations. To address this problem, researchers have proposed several schemes to detect Sybil attacks. However, most of these schemes assume costly setup such as the use of relay nodes or use of expensive devices and expensive encryption methods to verify the location information. In this paper, the authors present a method to detect Sybil attacks using Sequential Hypothesis Testing. The proposed method has been examined using a Greedy Perimeter Stateless Routing (GPSR) protocol with analysis and simulation. The simulation results demonstrate that the proposed method is robust against detecting Sybil attacks.
- « first
- ‹ previous
- 1
- 2
- 3