Biblio
This paper presents a novel design of content fingerprints based on maximization of the mutual information across the distortion channel. We use the information bottleneck method to optimize the filters and quantizers that generate these fingerprints. A greedy optimization scheme is used to select filters from a dictionary and allocate fingerprint bits. We test the performance of this method for audio fingerprinting and show substantial improvements over existing learning based fingerprints.
In Wireless Mesh Networks (WMNs), Network-Wide Broadcasts (NWBs) are a fundamental operation, required by routing and other mechanisms that distribute information to all nodes in the network. However, due to the characteristics of wireless communication, NWBs are generally problematic. Optimizing them thus is a prime target when improving the overall performance and dependability of WMNs. Most existing optimizations neglect the real nature of WMNs and are based on simple graph models, which provide optimistic assumptions of NWB dissemination. On the other hand, models that fully consider the complex propagation characteristics of NWBs quickly become unsolvable due to their complexity. In this paper, we present the Monte Carlo method Probabilistic Breadth-First Search (PBFS) to approximate the reachability of NWB protocols. PBFS simulates individual NWBs on graphs with probabilistic edge weights, which reflect link qualities of individual wireless links in the WMN, and estimates reachability over a configurable number of simulated runs. This approach is not only more efficient than existing ones, but further provides additional information, such as the distribution of path lengths. Furthermore, it is easily extensible to NWB schemes other than flooding. The applicability of PBFS is validated both theoretically and empirically, in the latter by comparing reachability as calculated by PBFS and measured in a real-world WMN. Validation shows that PBFS quickly converges to the theoretically correct value and approximates the behavior of real-life testbeds very well. The feasibility of PBFS to support research on NWB optimizations or higher level protocols that employ NWBs is demonstrated in two use cases.
To reduce human efforts in browsing long surveillance videos, synopsis videos are proposed. Traditional synopsis video generation applying optimization on video tubes is very time consuming and infeasible for real-time online generation. This dilemma significantly reduces the feasibility of synopsis video generation in practical situations. To solve this problem, the synopsis video generation problem is formulated as a maximum a posteriori probability (MAP) estimation problem in this paper, where the positions and appearing frames of video objects are chronologically rearranged in real time without the need to know their complete trajectories. Moreover, a synopsis table is employed with MAP estimation to decide the temporal locations of the incoming foreground objects in the synopsis video without needing an optimization procedure. As a result, the computational complexity of the proposed video synopsis generation method can be significantly reduced. Furthermore, as it does not require prescreening the entire video, this approach can be applied on online streaming videos.
This paper develops an opposition-based learning harmony search algorithm with mutation (OLHS-M) for solving global continuous optimization problems. The proposed method is different from the original harmony search (HS) in three aspects. Firstly, opposition-based learning technique is incorporated to the process of improvisation to enlarge the algorithm search space. Then, a new modified mutation strategy is instead of the original pitch adjustment operation of HS to further improve the search ability of HS. Effective self-adaptive strategy is presented to fine-tune the key control parameters (e.g. harmony memory consideration rate HMCR, and pitch adjustment rate PAR) to balance the local and global search in the evolution of the search process. Numerical results demonstrate that the proposed algorithm performs much better than the existing improved HS variants that reported in recent literature in terms of the solution quality and the stability.
The main focus of this work is the estimation of a complex valued signal assumed to have a sparse representation in an uncountable dictionary of signals. The dictionary elements are parameterized by a real-valued vector and the available observations are corrupted with an additive noise. By applying a linearization technique, the original model is recast as a constrained sparse perturbed model. The problem of the computation of the involved multiple parameters is addressed from a nonconvex optimization viewpoint. A cost function is defined including an arbitrary Lipschitz differentiable data fidelity term accounting for the noise statistics, and an ℓ0-like penalty. A proximal algorithm is then employed to solve the resulting nonconvex and nonsmooth minimization problem. Experimental results illustrate the good practical performance of the proposed approach when applied to 2D spectrum analysis.
This paper presents one-layer projection neural networks based on projection operators for solving constrained variational inequalities and related optimization problems. Sufficient conditions for global convergence of the proposed neural networks are provided based on Lyapunov stability. Compared with the existing neural networks for variational inequalities and optimization, the proposed neural networks have lower model complexities. In addition, some improved criteria for global convergence are given. Compared with our previous work, a design parameter has been added in the projection neural network models, and it results in some improved performance. The simulation results on numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural networks.
Distributed optimization is an emerging research topic. Agents in the network solve the problem by exchanging information which depicts people's consideration on a optimization problem in real lives. In this paper, we introduce two algorithms in continuous-time to solve distributed optimization problems with equality constraints where the cost function is expressed as a sum of functions and where each function is associated to an agent. We firstly construct a continuous dynamic system by utilizing the Lagrangian function and then show that the algorithm is locally convergent and globally stable under certain conditions. Then, we modify the Lagrangian function and re-construct the dynamic system to prove that the new algorithm will be convergent under more relaxed conditions. At last, we present some simulations to prove our theoretical results.
Existing methods for multi-objective optimization usually provide only an approximation of a Pareto front, and there is little theoretical guarantee of finding the real Pareto front. This paper is concerned with the possibility of fully determining the true Pareto front for those continuous multi-objective optimization problems for which there are a finite number of local optima in terms of each single objective function and there is an effective method to find all such local optima. To this end, some generalized theoretical conditions are firstly given to guarantee a complete cover of the actual Pareto front for both discrete and continuous problems. Then based on such conditions, an effective search procedure inspired by the rising sea level phenomenon is proposed particularly for continuous problems of the concerned class. Even for general continuous problems to which not all local optima are available, the new method may still work well to approximate the true Pareto front. The good practicability of the proposed method is especially underpinned by multi-optima evolutionary algorithms. The advantages of the proposed method in terms of both solution quality and computational efficiency are illustrated by the simulation results.
In this paper, we consider distributed algorithm based on a continuous-time multi-agent system to solve constrained optimization problem. The global optimization objective function is taken as the sum of agents' individual objective functions under a group of convex inequality function constraints. Because the local objective functions cannot be explicitly known by all the agents, the problem has to be solved in a distributed manner with the cooperation between agents. Here we propose a continuous-time distributed gradient dynamics based on the KKT condition and Lagrangian multiplier methods to solve the optimization problem. We show that all the agents asymptotically converge to the same optimal solution with the help of a constructed Lyapunov function and a LaSalle invariance principle of hybrid systems.
This paper proposes a cooperative continuous ant colony optimization (CCACO) algorithm and applies it to address the accuracy-oriented fuzzy systems (FSs) design problems. All of the free parameters in a zero- or first-order Takagi-Sugeno-Kang (TSK) FS are optimized through CCACO. The CCACO algorithm performs optimization through multiple ant colonies, where each ant colony is only responsible for optimizing the free parameters in a single fuzzy rule. The ant colonies cooperate to design a complete FS, with a complete parameter solution vector (encoding a complete FS) that is formed by selecting a subsolution component (encoding a single fuzzy rule) from each colony. Subsolutions in each ant colony are evolved independently using a new continuous ant colony optimization algorithm. In the CCACO, solutions are updated via the techniques of pheromone-based tournament ant path selection, ant wandering operation, and best-ant-attraction refinement. The performance of the CCACO is verified through applications to fuzzy controller and predictor design problems. Comparisons with other population-based optimization algorithms verify the superiority of the CCACO.
In this paper, we propose a decomposition based multiobjective evolutionary algorithm that extracts information from an external archive to guide the evolutionary search for continuous optimization problem. The proposed algorithm used a mechanism to identify the promising regions(subproblems) through learning information from the external archive to guide evolutionary search process. In order to demonstrate the performance of the algorithm, we conduct experiments to compare it with other decomposition based approaches. The results validate that our proposed algorithm is very competitive.
An improved harmony search algorithm is presented for solving continuous optimization problems in this paper. In the proposed algorithm, an elimination principle is developed for choosing from the harmony memory, so that the harmonies with better fitness will have more opportunities to be selected in generating new harmonies. Two key control parameters, pitch adjustment rate (PAR) and bandwidth distance (bw), are dynamically adjusted to favor exploration in the early stages and exploitation during the final stages of the search process with the different search spaces of the optimization problems. Numerical results of 12 benchmark problems show that the proposed algorithm performs more effectively than the existing HS variants in finding better solutions.
Sybil attack poses a serious threat to geographic routing. In this attack, a malicious node attempts to broadcast incorrect location information, identity and secret key information. A Sybil node can tamper its neighboring nodes for the purpose of converting them as malicious. As the amount of Sybil nodes increase in the network, the network traffic will seriously affect and the data packets will never reach to their destinations. To address this problem, researchers have proposed several schemes to detect Sybil attacks. However, most of these schemes assume costly setup such as the use of relay nodes or use of expensive devices and expensive encryption methods to verify the location information. In this paper, the authors present a method to detect Sybil attacks using Sequential Hypothesis Testing. The proposed method has been examined using a Greedy Perimeter Stateless Routing (GPSR) protocol with analysis and simulation. The simulation results demonstrate that the proposed method is robust against detecting Sybil attacks.
Sybil attack poses a serious threat to geographic routing. In this attack, a malicious node attempts to broadcast incorrect location information, identity and secret key information. A Sybil node can tamper its neighboring nodes for the purpose of converting them as malicious. As the amount of Sybil nodes increase in the network, the network traffic will seriously affect and the data packets will never reach to their destinations. To address this problem, researchers have proposed several schemes to detect Sybil attacks. However, most of these schemes assume costly setup such as the use of relay nodes or use of expensive devices and expensive encryption methods to verify the location information. In this paper, the authors present a method to detect Sybil attacks using Sequential Hypothesis Testing. The proposed method has been examined using a Greedy Perimeter Stateless Routing (GPSR) protocol with analysis and simulation. The simulation results demonstrate that the proposed method is robust against detecting Sybil attacks.