Biblio
Community structure detection in social networks has become a big challenge. Various methods in the literature have been presented to solve this challenge. Recently, several methods have also been proposed to solve this challenge based on a mapping-reduction model, in which data and algorithms are divided between different process nodes so that the complexity of time and memory of community detection in large social networks is reduced. In this paper, a mapping-reduction model is first proposed to detect the structure of communities. Then the proposed framework is rewritten according to a new mechanism called distributed cache memory; distributed cache memory can store different values associated with different keys and, if necessary, put them at different computational nodes. Finally, the proposed rewritten framework has been implemented using SPARK tools and its implementation results have been reported on several major social networks. The performed experiments show the effectiveness of the proposed framework by varying the values of various parameters.
Caching methods are developed since 50 years for paging in CPU and database systems, and since 25 years for web caching as main application areas among others. Pages of unique size are usual in CPU caches, whereas web caches are storing data chunks of different size in a widely varying range. We study the impact of different object sizes on the performance and the overhead of web caching. This entails different caching goals, starting from the byte and object hit ratio to a generalized value hit ratio for optimized costs and benefits of caching regarding traffic engineering (TE), reduced delays and other QoS measures. The selection of the cache contents turns out to be crucial for the web cache efficiency with awareness of the size and other properties in a score for each object. We introduce a new class of rank exchange caching methods and show how their performance compares to other strategies with extensions needed to include the size and scores for QoS and TE caching goals. Finally, we derive bounds on the object, byte and value hit ratio for the independent request model (IRM) based on optimum knapsack solutions of the cache content.
Current testing for Deep Neural Networks (DNNs) focuses on quantity of test cases but ignores diversity. To the best of our knowledge, DeepXplore is the first white-box framework for Deep Learning testing by triggering differential behaviors between multiple DNNs and increasing neuron coverage to improve diversity. Since it is based on multiple DNNs facing problems that (1) the framework is not friendly to a single DNN, (2) if incorrect predictions made by all DNNs simultaneously, DeepXplore cannot generate test cases. This paper presents Test4Deep, a white-box testing framework based on a single DNN. Test4Deep avoids mistakes of multiple DNNs by inducing inconsistencies between predicted labels of original inputs and that of generated test inputs. Meanwhile, Test4Deep improves neuron coverage to capture more diversity by attempting to activate more inactivated neurons. The proposed method was evaluated on three popular datasets with nine DNNs. Compared to DeepXplore, Test4Deep produced average 4.59% (maximum 10.49%) more test cases that all found errors and faults of DNNs. These test cases got 19.57% more diversity increment and 25.88% increment of neuron coverage. Test4Deep can further be used to improve the accuracy of DNNs by average up to 5.72% (maximum 7.0%).
Reverse engineering is a manually intensive but necessary technique for understanding the inner workings of new malware, finding vulnerabilities in existing systems, and detecting patent infringements in released software. An assembly clone search engine facilitates the work of reverse engineers by identifying those duplicated or known parts. However, it is challenging to design a robust clone search engine, since there exist various compiler optimization options and code obfuscation techniques that make logically similar assembly functions appear to be very different. A practical clone search engine relies on a robust vector representation of assembly code. However, the existing clone search approaches, which rely on a manual feature engineering process to form a feature vector for an assembly function, fail to consider the relationships between features and identify those unique patterns that can statistically distinguish assembly functions. To address this problem, we propose to jointly learn the lexical semantic relationships and the vector representation of assembly functions based on assembly code. We have developed an assembly code representation learning model \textbackslashemphAsm2Vec. It only needs assembly code as input and does not require any prior knowledge such as the correct mapping between assembly functions. It can find and incorporate rich semantic relationships among tokens appearing in assembly code. We conduct extensive experiments and benchmark the learning model with state-of-the-art static and dynamic clone search approaches. We show that the learned representation is more robust and significantly outperforms existing methods against changes introduced by obfuscation and optimizations.
Spams are unsolicited and unnecessary messages which may contain harmful codes or links for activation of malicious viruses and spywares. Increasing popularity of social networks attracts the spammers to perform malicious activities in social networks. So an efficient spam detection method is necessary for social networks. In this paper, feed forward neural network with back propagation based spam detection model is proposed. The quality of the learning process is improved by tuning initial weights of feed forward neural network using proposed enhanced step size firefly algorithm which reduces the time for finding optimal weights during the learning process. The model is applied for twitter dataset and the experimental results show that, the proposed model performs well in terms of accuracy and detection rate and has lower false positive rate.
We consider some approaches to the construction of lightweight block ciphers and introduce the definitions for "index of strong nonlinearity" and "index of perfection". For PRESENT, MIDORI, SKINNY, CLEFIA, LILLIPUT mixing and nonlinear properties were evaluated. We obtain the exact values of the exponents for mixing matrices of round functions and the upper bounds for indexes of perfection and strong nonlinearity. It was determined by the experiment that each coordinate function of output block is nonlinear during 500 rounds. We propose the algorithmic realization of 16×16 S-box based on the modified additive generator with lightweight cipher SPECK as a modification which does not demand memory for storage huge substitution tables. The best value of the differential characteristic of such S-box is 18/216, the minimal nonlinearity degree of coordinate functions is equal to 15 and the minimal linear characteristic is 788/215.
Fog computing extends cloud computing technology to the edge of the infrastructure to support dynamic computation for IoT applications. Reduced latency and location awareness in objects' data access is attained by displacing workloads from the central cloud to edge devices. Doing so, it reduces raw data transfers from target objects to the central cloud, thus overcoming communication bottlenecks. This is a key step towards the pervasive uptake of next generation IoT-based services. In this work we study efficient orchestration of applications in fog computing, where a fog application is the cascade of a cloud module and a fog module. The problem results into a mixed integer non linear optimisation. It involves multiple constraints due to computation and communication demands of fog applications, available infrastructure resources and it accounts also the location of target IoT objects. We show that it is possible to reduce the complexity of the original problem with a related placement formulation, which is further solved using a greedy algorithm. This algorithm is the core placement logic of FogAtlas, a fog computing platform based on existing virtualization technologies. Extensive numerical results validate the model and the scalability of the proposed algorithm, showing performance close to the optimal solution with respect to the number of served applications.
This article will consider the probability test of Solovey-Strassen, to determine the simplicity of the number and its possible modifications. This test allows for the shortest possible time to determine whether the number is prime or not. C\# programming language was used to implement the algorithm in practice.
This article presents a consensus based distributed energy management optimization algorithm for an islanded microgrid. With the rapid development of renewable energy and distributed generation (DG) energy management is becoming more and more distributed. To solve this problem a multi-agent system based distributed solution is designed in this work which uses lambda-iteration method to solve optimization problem. Moreover, the algorithm is fully distributed and transmission losses are also considered in the modeling process which enhanced the practicality of proposed work. Simulations are performed for different cases on 8-bus microgrid to show the effectiveness of algorithm. Moreover, a scalability test is performed at the end to further justify the expandability performance of algorithm for more advanced networks.
Nowadays, many applications involve big data and big data analysis methods appear in many fields. As a preliminary attempt to solve the challenge of big data analysis, this paper presents a distributed online learning algorithm based on differential privacy. Since online learning can effectively process sensitive data, we introduce the concept of differential privacy in distributed online learning algorithms, with the aim at ensuring data privacy during online learning to prevent adversarial nodes from inferring any important data information. In particular, for different adversary models, we consider different type graphs to tolerate a limited number of adversaries near each regular node or tolerate a global limited number of adversaries.
The present paper describes some of the results obtained in the Faculty of Computer Systems and Technology at Technical University of Sofia in the implementation of project related to the application of intelligent methods for increasing the security in computer networks. Also is made a survey about existing hybrid methods, which are using several artificial intelligent methods for cyber defense. The paper introduces a model for intrusion detection systems where multi agent systems are the bases and artificial intelligence are applicable by the means simple real-time models constructed in laboratory environment.
Control-Flow Hijacking attacks are the dominant attack vector against C/C++ programs. Control-Flow Integrity (CFI) solutions mitigate these attacks on the forward edge, i.e., indirect calls through function pointers and virtual calls. Protecting the backward edge is left to stack canaries, which are easily bypassed through information leaks. Shadow Stacks are a fully precise mechanism for protecting backwards edges, and should be deployed with CFI mitigations. We present a comprehensive analysis of all possible shadow stack mechanisms along three axes: performance, compatibility, and security. For performance comparisons we use SPEC CPU2006, while security and compatibility are qualitatively analyzed. Based on our study, we renew calls for a shadow stack design that leverages a dedicated register, resulting in low performance overhead, and minimal memory overhead, but sacrifices compatibility. We present case studies of our implementation of such a design, Shadesmar, on Phoronix and Apache to demonstrate the feasibility of dedicating a general purpose register to a security monitor on modern architectures, and Shadesmar's deployability. Our comprehensive analysis, including detailed case studies for our novel design, allows compiler designers and practitioners to select the correct shadow stack design for different usage scenarios. Shadow stacks belong to the class of defense mechanisms that require metadata about the program's state to enforce their defense policies. Protecting this metadata for deployed mitigations requires in-process isolation of a segment of the virtual address space. Prior work on defenses in this class has relied on information hiding to protect metadata. We show that stronger guarantees are possible by repurposing two new Intel x86 extensions for memory protection (MPX), and page table control (MPK). Building on our isolation efforts with MPX and MPK, we present the design requirements for a dedicated hardware mechanism to support intra-process memory isolation, and discuss how such a mechanism can empower the next wave of highly precise software security mitigations that rely on partially isolated information in a process.
Correct compilers perform program transformations preserving input/output behaviours of programs. Yet, correctness does not prevent program optimisations from introducing information-flow leaks that would make the target program more vulnerable to side-channel attacks than the source program. To tackle this problem, we propose a notion of Information-Flow Preserving (IFP) program transformation which ensures that a target program is no more vulnerable to passive side-channel attacks than a source program. To protect against a wide range of attacks, we model an attacker who is granted arbitrary memory accesses for a pre-defined set of observation points. We propose a compositional proof principle for proving that a transformation is IFP. Using this principle, we show how a translation validation technique can be used to automatically verify and even close information-flow leaks introduced by standard compiler passes such as dead-store elimination and register allocation. The technique has been experimentally validated on the CompCert C compiler.
In last decades, the web and online services have revolutionized the modern world. However, by increasing our dependence on online services, as a result, online security threats are also increasing rapidly. One of the most common online security threats is a so-called Phishing attack, the purpose of which is to mimic a legitimate website such as online banking, e-commerce or social networking website in order to obtain sensitive data such as user-names, passwords, financial and health-related information from potential victims. The problem of detecting phishing websites has been addressed many times using various methodologies from conventional classifiers to more complex hybrid methods. Recent advancements in deep learning approaches suggested that the classification of phishing websites using deep learning neural networks should outperform the traditional machine learning algorithms. However, the results of utilizing deep neural networks heavily depend on the setting of different learning parameters. In this paper, we propose a swarm intelligence based approach to parameter setting of deep learning neural network. By applying the proposed approach to the classification of phishing websites, we were able to improve their detection when compared to existing algorithms.