Visible to the public Biblio

Found 289 results

Filters: Keyword is Optimization  [Clear All Filters]
2020-02-18
Fattahi, Saeideh, Yazdani, Reza, Vahidipour, Seyyed Mehdi.  2019.  Discovery of Society Structure in A Social Network Using Distributed Cache Memory. 2019 5th International Conference on Web Research (ICWR). :264–269.

Community structure detection in social networks has become a big challenge. Various methods in the literature have been presented to solve this challenge. Recently, several methods have also been proposed to solve this challenge based on a mapping-reduction model, in which data and algorithms are divided between different process nodes so that the complexity of time and memory of community detection in large social networks is reduced. In this paper, a mapping-reduction model is first proposed to detect the structure of communities. Then the proposed framework is rewritten according to a new mechanism called distributed cache memory; distributed cache memory can store different values associated with different keys and, if necessary, put them at different computational nodes. Finally, the proposed rewritten framework has been implemented using SPARK tools and its implementation results have been reported on several major social networks. The performed experiments show the effectiveness of the proposed framework by varying the values of various parameters.

Hasslinger, Gerhard, Ntougias, Konstantinos, Hasslinger, Frank, Hohlfeld, Oliver.  2019.  Fast and Efficient Web Caching Methods Regarding the Size and Performance Measures per Data Object. 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1–7.

Caching methods are developed since 50 years for paging in CPU and database systems, and since 25 years for web caching as main application areas among others. Pages of unique size are usual in CPU caches, whereas web caches are storing data chunks of different size in a widely varying range. We study the impact of different object sizes on the performance and the overhead of web caching. This entails different caching goals, starting from the byte and object hit ratio to a generalized value hit ratio for optimized costs and benefits of caching regarding traffic engineering (TE), reduced delays and other QoS measures. The selection of the cache contents turns out to be crucial for the web cache efficiency with awareness of the size and other properties in a score for each object. We introduce a new class of rank exchange caching methods and show how their performance compares to other strategies with extensions needed to include the size and scores for QoS and TE caching goals. Finally, we derive bounds on the object, byte and value hit ratio for the independent request model (IRM) based on optimum knapsack solutions of the cache content.

Yu, Jing, Fu, Yao, Zheng, Yanan, Wang, Zheng, Ye, Xiaojun.  2019.  Test4Deep: An Effective White-Box Testing for Deep Neural Networks. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :16–23.

Current testing for Deep Neural Networks (DNNs) focuses on quantity of test cases but ignores diversity. To the best of our knowledge, DeepXplore is the first white-box framework for Deep Learning testing by triggering differential behaviors between multiple DNNs and increasing neuron coverage to improve diversity. Since it is based on multiple DNNs facing problems that (1) the framework is not friendly to a single DNN, (2) if incorrect predictions made by all DNNs simultaneously, DeepXplore cannot generate test cases. This paper presents Test4Deep, a white-box testing framework based on a single DNN. Test4Deep avoids mistakes of multiple DNNs by inducing inconsistencies between predicted labels of original inputs and that of generated test inputs. Meanwhile, Test4Deep improves neuron coverage to capture more diversity by attempting to activate more inactivated neurons. The proposed method was evaluated on three popular datasets with nine DNNs. Compared to DeepXplore, Test4Deep produced average 4.59% (maximum 10.49%) more test cases that all found errors and faults of DNNs. These test cases got 19.57% more diversity increment and 25.88% increment of neuron coverage. Test4Deep can further be used to improve the accuracy of DNNs by average up to 5.72% (maximum 7.0%).

2020-02-17
Chalise, Batu K..  2019.  ADMM-based Beamforming Optimization for Physical Layer Security in a Full-duplex Relay System. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :4734–4738.
Although beamforming optimization problems in full-duplex communication systems can be optimally solved with the semidefinite relaxation (SDR) approach, its computational complexity increases rapidly when the problem size increases. In order to circumvent this issue, in this paper, we propose an alternating direction of multiplier method (ADMM) which minimizes the augmented Lagrangian of the dual of the SDR and handles the inequality constraints with the use of slack variables. The proposed ADMM is then applied for optimizing the relay beamformer to maximize the secrecy rate. Simulation results show that the proposed ADMM performs as good as the SDR approach.
2020-02-10
Ding, Steven H. H., Fung, Benjamin C. M., Charland, Philippe.  2019.  Asm2Vec: Boosting Static Representation Robustness for Binary Clone Search against Code Obfuscation and Compiler Optimization. 2019 IEEE Symposium on Security and Privacy (SP). :472–489.

Reverse engineering is a manually intensive but necessary technique for understanding the inner workings of new malware, finding vulnerabilities in existing systems, and detecting patent infringements in released software. An assembly clone search engine facilitates the work of reverse engineers by identifying those duplicated or known parts. However, it is challenging to design a robust clone search engine, since there exist various compiler optimization options and code obfuscation techniques that make logically similar assembly functions appear to be very different. A practical clone search engine relies on a robust vector representation of assembly code. However, the existing clone search approaches, which rely on a manual feature engineering process to form a feature vector for an assembly function, fail to consider the relationships between features and identify those unique patterns that can statistically distinguish assembly functions. To address this problem, we propose to jointly learn the lexical semantic relationships and the vector representation of assembly functions based on assembly code. We have developed an assembly code representation learning model \textbackslashemphAsm2Vec. It only needs assembly code as input and does not require any prior knowledge such as the correct mapping between assembly functions. It can find and incorporate rich semantic relationships among tokens appearing in assembly code. We conduct extensive experiments and benchmark the learning model with state-of-the-art static and dynamic clone search approaches. We show that the learned representation is more robust and significantly outperforms existing methods against changes introduced by obfuscation and optimizations.

Elakkiya, E, Selvakumar, S.  2019.  Initial Weights Optimization Using Enhanced Step Size Firefly Algorithm for Feed Forward Neural Network Applied to Spam Detection. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). :942–946.

Spams are unsolicited and unnecessary messages which may contain harmful codes or links for activation of malicious viruses and spywares. Increasing popularity of social networks attracts the spammers to perform malicious activities in social networks. So an efficient spam detection method is necessary for social networks. In this paper, feed forward neural network with back propagation based spam detection model is proposed. The quality of the learning process is improved by tuning initial weights of feed forward neural network using proposed enhanced step size firefly algorithm which reduces the time for finding optimal weights during the learning process. The model is applied for twitter dataset and the experimental results show that, the proposed model performs well in terms of accuracy and detection rate and has lower false positive rate. 

2020-01-27
Tuba, Eva, Jovanovic, Raka, Zivkovic, Dejan, Beko, Marko, Tuba, Milan.  2019.  Clustering Algorithm Optimized by Brain Storm Optimization for Digital Image Segmentation. 2019 7th International Symposium on Digital Forensics and Security (ISDFS). :1–6.
In the last several decades digital images were extend their usage in numerous areas. Due to various digital image processing methods they became part areas such as astronomy, agriculture and more. One of the main task in image processing application is segmentation. Since segmentation represents rather important problem, various methods were proposed in the past. One of the methods is to use clustering algorithms which is explored in this paper. We propose k-means algorithm for digital image segmentation. K-means algorithm's well known drawback is the high possibility of getting trapped into local optima. In this paper we proposed brain storm optimization algorithm for optimizing k-means algorithm used for digital image segmentation. Our proposed algorithm is tested on several benchmark images and the results are compared with other stat-of-the-art algorithms. The proposed method outperformed the existing methods.
Fuchs, Caro, Spolaor, Simone, Nobile, Marco S., Kaymak, Uzay.  2019.  A Swarm Intelligence Approach to Avoid Local Optima in Fuzzy C-Means Clustering. 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–6.
Clustering analysis is an important computational task that has applications in many domains. One of the most popular algorithms to solve the clustering problem is fuzzy c-means, which exploits notions from fuzzy logic to provide a smooth partitioning of the data into classes, allowing the possibility of multiple membership for each data sample. The fuzzy c-means algorithm is based on the optimization of a partitioning function, which minimizes inter-cluster similarity. This optimization problem is known to be NP-hard and it is generally tackled using a hill climbing method, a local optimizer that provides acceptable but sub-optimal solutions, since it is sensitive to initialization and tends to get stuck in local optima. In this work we propose an alternative approach based on the swarm intelligence global optimization method Fuzzy Self-Tuning Particle Swarm Optimization (FST-PSO). We solve the fuzzy clustering task by optimizing fuzzy c-means' partitioning function using FST-PSO. We show that this population-based metaheuristics is more effective than hill climbing, providing high quality solutions with the cost of an additional computational complexity. It is noteworthy that, since this particle swarm optimization algorithm is self-tuning, the user does not have to specify additional hyperparameters for the optimization process.
Kalaivani, S., Vikram, A., Gopinath, G..  2019.  An Effective Swarm Optimization Based Intrusion Detection Classifier System for Cloud Computing. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :185–188.
Most of the swarm optimization techniques are inspired by the characteristics as well as behaviour of flock of birds whereas Artificial Bee Colony is based on the foraging characteristics of the bees. However, certain problems which are solved by ABC do not yield desired results in-terms of performance. ABC is a new devised swarm intelligence algorithm and predominately employed for optimization of numerical problems. The main reason for the success of ABC algorithm is that it consists of feature such as fathomable and flexibility when compared to other swarm optimization algorithms and there are many possible applications of ABC. Cloud computing has their limitation in their application and functionality. The cloud computing environment experiences several security issues such as Dos attack, replay attack, flooding attack. In this paper, an effective classifier is proposed based on Artificial Bee Colony for cloud computing. It is evident in the evaluation results that the proposed classifier achieved a higher accuracy rate.
2020-01-20
Vu, Thang X., Vu, Trinh Anh, Lei, Lei, Chatzinotas, Symeon, Ottersten, Björn.  2019.  Linear Precoding Design for Cache-aided Full-duplex Networks. 2019 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
Edge caching has received much attention as a promising technique to overcome the stringent latency and data hungry challenges in the future generation wireless networks. Meanwhile, full-duplex (FD) transmission can potentially double the spectral efficiency by allowing a node to receive and transmit simultaneously. In this paper, we study a cache-aided FD system via delivery time analysis and optimization. In the considered system, an edge node (EN) operates in FD mode and serves users via wireless channels. Two optimization problems are formulated to minimize the largest delivery time based on the two popular linear beamforming zero-forcing and minimum mean square error designs. Since the formulated problems are non-convex due to the self-interference at the EN, we propose two iterative optimization algorithms based on the inner approximation method. The convergence of the proposed iterative algorithms is analytically guaranteed. Finally, the impacts of caching and the advantages of the FD system over the half-duplex (HD) counterpart are demonstrated via numerical results.
Khairullin, Ilias, Bobrov, Vladimir.  2019.  On Cryptographic Properties of Some Lightweight Algorithms and its Application to the Construction of S-Boxes. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :1807–1810.

We consider some approaches to the construction of lightweight block ciphers and introduce the definitions for "index of strong nonlinearity" and "index of perfection". For PRESENT, MIDORI, SKINNY, CLEFIA, LILLIPUT mixing and nonlinear properties were evaluated. We obtain the exact values of the exponents for mixing matrices of round functions and the upper bounds for indexes of perfection and strong nonlinearity. It was determined by the experiment that each coordinate function of output block is nonlinear during 500 rounds. We propose the algorithmic realization of 16×16 S-box based on the modified additive generator with lightweight cipher SPECK as a modification which does not demand memory for storage huge substitution tables. The best value of the differential characteristic of such S-box is 18/216, the minimal nonlinearity degree of coordinate functions is equal to 15 and the minimal linear characteristic is 788/215.

Faticanti, Francescomaria, De Pellegrini, Francesco, Siracusa, Domenico, Santoro, Daniele, Cretti, Silvio.  2019.  Cutting Throughput with the Edge: App-Aware Placement in Fog Computing. 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :196–203.

Fog computing extends cloud computing technology to the edge of the infrastructure to support dynamic computation for IoT applications. Reduced latency and location awareness in objects' data access is attained by displacing workloads from the central cloud to edge devices. Doing so, it reduces raw data transfers from target objects to the central cloud, thus overcoming communication bottlenecks. This is a key step towards the pervasive uptake of next generation IoT-based services. In this work we study efficient orchestration of applications in fog computing, where a fog application is the cascade of a cloud module and a fog module. The problem results into a mixed integer non linear optimisation. It involves multiple constraints due to computation and communication demands of fog applications, available infrastructure resources and it accounts also the location of target IoT objects. We show that it is possible to reduce the complexity of the original problem with a related placement formulation, which is further solved using a greedy algorithm. This algorithm is the core placement logic of FogAtlas, a fog computing platform based on existing virtualization technologies. Extensive numerical results validate the model and the scalability of the proposed algorithm, showing performance close to the optimal solution with respect to the number of served applications.

Myzdrikov, Nikita Ye., Semeonov, Ivan Ye., Yukhnov, Vasiliy I., Safaryan, Olga A., Reshetnikova, Irina V., Lobodenko, Andrey G., Cherckesova, Larissa V., Porksheyan, Vitaliy M..  2019.  Modification and Optimization of Solovey-Strassen's Fast Exponentiation Probablistic Test Binary Algorithm. 2019 IEEE East-West Design Test Symposium (EWDTS). :1–3.

This article will consider the probability test of Solovey-Strassen, to determine the simplicity of the number and its possible modifications. This test allows for the shortest possible time to determine whether the number is prime or not. C\# programming language was used to implement the algorithm in practice.

Waqar, Ali, Hu, Junjie, Mushtaq, Muhammad Rizwan, Hussain, Hadi, Qazi, Hassaan Aziz.  2019.  Energy Management in an Islanded Microgrid: A Consensus Theory Approach. 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). :1–6.

This article presents a consensus based distributed energy management optimization algorithm for an islanded microgrid. With the rapid development of renewable energy and distributed generation (DG) energy management is becoming more and more distributed. To solve this problem a multi-agent system based distributed solution is designed in this work which uses lambda-iteration method to solve optimization problem. Moreover, the algorithm is fully distributed and transmission losses are also considered in the modeling process which enhanced the practicality of proposed work. Simulations are performed for different cases on 8-bus microgrid to show the effectiveness of algorithm. Moreover, a scalability test is performed at the end to further justify the expandability performance of algorithm for more advanced networks.

2019-12-30
Shirasaki, Yusuke, Takyu, Osamu, Fujii, Takeo, Ohtsuki, Tomoaki, Sasamori, Fumihito, Handa, Shiro.  2018.  Consideration of security for PLNC with untrusted relay in game theoretic perspective. 2018 IEEE Radio and Wireless Symposium (RWS). :109–112.
A physical layer network coding (PLNC) is a highly efficient scheme for exchanging information between two nodes. Since the relay receives the interfered signal between two signals sent by two nodes, it hardly decodes any information from received signal. Therefore, the secure wireless communication link to the untrusted relay is constructed. The two nodes optimize the transmit power control for maximizing the secure capacity but these depend on the channel state information informed by the relay station. Therefore, the untrusted relay disguises the informed CSI for exploiting the information from two nodes. This paper constructs the game of two optimizations between the legitimate two nodes and the untrusted relay for clarifying the security of PLNC with untrusted relay.
2019-12-16
Hou, Ming, Li, Dequan, Wu, Xiongjun, Shen, Xiuyu.  2019.  Differential Privacy of Online Distributed Optimization under Adversarial Nodes. 2019 Chinese Control Conference (CCC). :2172-2177.

Nowadays, many applications involve big data and big data analysis methods appear in many fields. As a preliminary attempt to solve the challenge of big data analysis, this paper presents a distributed online learning algorithm based on differential privacy. Since online learning can effectively process sensitive data, we introduce the concept of differential privacy in distributed online learning algorithms, with the aim at ensuring data privacy during online learning to prevent adversarial nodes from inferring any important data information. In particular, for different adversary models, we consider different type graphs to tolerate a limited number of adversaries near each regular node or tolerate a global limited number of adversaries.

Lin, Jerry Chun-Wei, Zhang, Yuyu, Chen, Chun-Hao, Wu, Jimmy Ming-Tai, Chen, Chien-Ming, Hong, Tzung-Pei.  2018.  A Multiple Objective PSO-Based Approach for Data Sanitization. 2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI). :148–151.
In this paper, a multi-objective particle swarm optimization (MOPSO)-based framework is presented to find the multiple solutions rather than a single one. The presented grid-based algorithm is used to assign the probability of the non-dominated solution for next iteration. Based on the designed algorithm, it is unnecessary to pre-define the weights of the side effects for evaluation but the non-dominated solutions can be discovered as an alternative way for data sanitization. Extensive experiments are carried on two datasets to show that the designed grid-based algorithm achieves good performance than the traditional single-objective evolution algorithms.
Wu, Jimmy Ming-Tai, Chun-Wei Lin, Jerry, Djenouri, Youcef, Fournier-Viger, Philippe, Zhang, Yuyu.  2019.  A Swarm-based Data Sanitization Algorithm in Privacy-Preserving Data Mining. 2019 IEEE Congress on Evolutionary Computation (CEC). :1461–1467.
In recent decades, data protection (PPDM), which not only hides information, but also provides information that is useful to make decisions, has become a critical concern. We present a sanitization algorithm with the consideration of four side effects based on multi-objective PSO and hierarchical clustering methods to find optimized solutions for PPDM. Experiments showed that compared to existing approaches, the designed sanitization algorithm based on the hierarchical clustering method achieves satisfactory performance in terms of hiding failure, missing cost, and artificial cost.
2019-12-09
Tsochev, Georgi, Trifonov, Roumen, Yoshinov, Radoslav, Manolov, Slavcho, Pavlova, Galya.  2019.  Improving the Efficiency of IDPS by Using Hybrid Methods from Artificial Intelligence. 2019 International Conference on Information Technologies (InfoTech). :1-4.

The present paper describes some of the results obtained in the Faculty of Computer Systems and Technology at Technical University of Sofia in the implementation of project related to the application of intelligent methods for increasing the security in computer networks. Also is made a survey about existing hybrid methods, which are using several artificial intelligent methods for cyber defense. The paper introduces a model for intrusion detection systems where multi agent systems are the bases and artificial intelligence are applicable by the means simple real-time models constructed in laboratory environment.

2019-12-02
Burow, Nathan, Zhang, Xinping, Payer, Mathias.  2019.  SoK: Shining Light on Shadow Stacks. 2019 IEEE Symposium on Security and Privacy (SP). :985–999.

Control-Flow Hijacking attacks are the dominant attack vector against C/C++ programs. Control-Flow Integrity (CFI) solutions mitigate these attacks on the forward edge, i.e., indirect calls through function pointers and virtual calls. Protecting the backward edge is left to stack canaries, which are easily bypassed through information leaks. Shadow Stacks are a fully precise mechanism for protecting backwards edges, and should be deployed with CFI mitigations. We present a comprehensive analysis of all possible shadow stack mechanisms along three axes: performance, compatibility, and security. For performance comparisons we use SPEC CPU2006, while security and compatibility are qualitatively analyzed. Based on our study, we renew calls for a shadow stack design that leverages a dedicated register, resulting in low performance overhead, and minimal memory overhead, but sacrifices compatibility. We present case studies of our implementation of such a design, Shadesmar, on Phoronix and Apache to demonstrate the feasibility of dedicating a general purpose register to a security monitor on modern architectures, and Shadesmar's deployability. Our comprehensive analysis, including detailed case studies for our novel design, allows compiler designers and practitioners to select the correct shadow stack design for different usage scenarios. Shadow stacks belong to the class of defense mechanisms that require metadata about the program's state to enforce their defense policies. Protecting this metadata for deployed mitigations requires in-process isolation of a segment of the virtual address space. Prior work on defenses in this class has relied on information hiding to protect metadata. We show that stronger guarantees are possible by repurposing two new Intel x86 extensions for memory protection (MPX), and page table control (MPK). Building on our isolation efforts with MPX and MPK, we present the design requirements for a dedicated hardware mechanism to support intra-process memory isolation, and discuss how such a mechanism can empower the next wave of highly precise software security mitigations that rely on partially isolated information in a process.

Besson, Frédéric, Dang, Alexandre, Jensen, Thomas.  2019.  Information-Flow Preservation in Compiler Optimisations. 2019 IEEE 32nd Computer Security Foundations Symposium (CSF). :230–23012.

Correct compilers perform program transformations preserving input/output behaviours of programs. Yet, correctness does not prevent program optimisations from introducing information-flow leaks that would make the target program more vulnerable to side-channel attacks than the source program. To tackle this problem, we propose a notion of Information-Flow Preserving (IFP) program transformation which ensures that a target program is no more vulnerable to passive side-channel attacks than a source program. To protect against a wide range of attacks, we model an attacker who is granted arbitrary memory accesses for a pre-defined set of observation points. We propose a compositional proof principle for proving that a transformation is IFP. Using this principle, we show how a translation validation technique can be used to automatically verify and even close information-flow leaks introduced by standard compiler passes such as dead-store elimination and register allocation. The technique has been experimentally validated on the CompCert C compiler.

Yang, Shouguo, Shi, Zhiqiang, Zhang, Guodong, Li, Mingxuan, Ma, Yuan, Sun, Limin.  2019.  Understand Code Style: Efficient CNN-Based Compiler Optimization Recognition System. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
Compiler optimization level recognition can be applied to vulnerability discovery and binary analysis. Due to the exists of many different compilation optimization options, the difference in the contents of the binary file is very complicated. There are thousands of compiler optimization algorithms and multiple different processor architectures, so it is very difficult to manually analyze binary files and recognize its compiler optimization level with rules. This paper first proposes a CNN-based compiler optimization level recognition model: BinEye. The system extracts semantic and structural differences and automatically recognize the compiler optimization levels. The model is designed to be very suitable for binary file processing and is easy to understand. We built a dataset containing 80028 binary files for the model training and testing. Our proposed model achieves an accuracy of over 97%. At the same time, BinEye is a fully CNN-based system and it has a faster forward calculation speed, at least 8 times faster than the normal RNN-based model. Through our analysis of the model output, we successfully found the difference in assembly codes caused by the different compiler optimization level. This means that the model we proposed is interpretable. Based on our model, we propose a method to analyze the code differences caused by different compiler optimization levels, which has great guiding significance for analyzing closed source compilers and binary security analysis.
Simon, Laurent, Chisnall, David, Anderson, Ross.  2018.  What You Get is What You C: Controlling Side Effects in Mainstream C Compilers. 2018 IEEE European Symposium on Security and Privacy (EuroS P). :1–15.
Security engineers have been fighting with C compilers for years. A careful programmer would test for null pointer dereferencing or division by zero; but the compiler would fail to understand, and optimize the test away. Modern compilers now have dedicated options to mitigate this. But when a programmer tries to control side effects of code, such as to make a cryptographic algorithm execute in constant time, the problem remains. Programmers devise complex tricks to obscure their intentions, but compiler writers find ever smarter ways to optimize code. A compiler upgrade can suddenly and without warning open a timing channel in previously secure code. This arms race is pointless and has to stop. We argue that we must stop fighting the compiler, and instead make it our ally. As a starting point, we analyze the ways in which compiler optimization breaks implicit properties of crypto code; and add guarantees for two of these properties in Clang/LLVM. Our work explores what is actually involved in controlling side effects on modern CPUs with a standard toolchain. Similar techniques can and should be applied to other security properties; achieving intentions by compiler commands or annotations makes them explicit, so we can reason about them. It is already understood that explicitness is essential for cryptographic protocol security and for compiler performance; it is essential for language security too. We therefore argue that this should be only the first step in a sustained engineering effort.
2019-11-26
Vrban\v ci\v c, Grega, Fister, Jr., Iztok, Podgorelec, Vili.  2018.  Swarm Intelligence Approaches for Parameter Setting of Deep Learning Neural Network: Case Study on Phishing Websites Classification. Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics. :9:1-9:8.

In last decades, the web and online services have revolutionized the modern world. However, by increasing our dependence on online services, as a result, online security threats are also increasing rapidly. One of the most common online security threats is a so-called Phishing attack, the purpose of which is to mimic a legitimate website such as online banking, e-commerce or social networking website in order to obtain sensitive data such as user-names, passwords, financial and health-related information from potential victims. The problem of detecting phishing websites has been addressed many times using various methodologies from conventional classifiers to more complex hybrid methods. Recent advancements in deep learning approaches suggested that the classification of phishing websites using deep learning neural networks should outperform the traditional machine learning algorithms. However, the results of utilizing deep neural networks heavily depend on the setting of different learning parameters. In this paper, we propose a swarm intelligence based approach to parameter setting of deep learning neural network. By applying the proposed approach to the classification of phishing websites, we were able to improve their detection when compared to existing algorithms.

2019-11-25
Guo, Tao, Yeung, Raymond w..  2018.  The Explicit Coding Rate Region of Symmetric Multilevel Diversity Coding. 2018 Information Theory and Applications Workshop (ITA). :1–9.
It is well known that superposition coding, namely separately encoding the independent sources, is optimal for symmetric multilevel diversity coding (SMDC) (Yeung-Zhang 1999). However, the characterization of the coding rate region therein involves uncountably many linear inequalities and the constant term (i.e., the lower bound) in each inequality is given in terms of the solution of a linear optimization problem. Thus this implicit characterization of the coding rate region does not enable the determination of the achievability of a given rate tuple. In this paper, we first obtain closed-form expressions of these uncountably many inequalities. Then we identify a finite subset of inequalities that is sufficient for characterizing the coding rate region. This gives an explicit characterization of the coding rate region. We further show by the symmetry of the problem that only a much smaller subset of this finite set of inequalities needs to be verified in determining the achievability of a given rate tuple. Yet, the cardinality of this smaller set grows at least exponentially fast with L.