Alabugin, Sergei K., Sokolov, Alexander N..
2021.
Applying of Recurrent Neural Networks for Industrial Processes Anomaly Detection. 2021 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :0467–0470.
The paper considers the issue of recurrent neural networks applicability for detecting industrial process anomalies to detect intrusion in Industrial Control Systems. Cyberattack on Industrial Control Systems often leads to appearing of anomalies in industrial process. Thus, it is proposed to detect such anomalies by forecasting the state of an industrial process using a recurrent neural network and comparing the predicted state with actual process' state. In the course of experimental research, a recurrent neural network with one-dimensional convolutional layer was implemented. The Secure Water Treatment dataset was used to train model and assess its quality. The obtained results indicate the possibility of using the proposed method in practice. The proposed method is characterized by the absence of the need to use anomaly data for training. Also, the method has significant interpretability and allows to localize an anomaly by pointing to a sensor or actuator whose signal does not match the model's prediction.
Griffioen, Paul, Romagnoli, Raffaele, Krogh, Bruce H., Sinopoli, Bruno.
2021.
Resilient Control in the Presence of Man-in-the-Middle Attacks. 2021 American Control Conference (ACC). :4553–4560.
Cyber-physical systems, which are ubiquitous in modern critical infrastructure, oftentimes rely on sending actuation commands and sensor measurements over a network, subjecting this information to potential man-in-the-middle attacks. These attacks can take the form of denial of service attacks or integrity attacks. Previous approaches at ensuring the resiliency of the overall control system against these types of attacks have leveraged functional redundancy in the system, including resilient estimation and reconfigurable control. However, these approaches are only able to ensure resiliency up to a particular subset of the actuator commands and sensor measurements being compromised. In contrast, we introduce a resiliency mechanism in this paper that can ensure safety for the overall system when all the actuator commands and sensor measurements are compromised. In addition, this approach does not require the implementation of any detection algorithm. We leverage communication redundancy in the number of pathways across the network to guarantee safety when up to a certain percentage of those pathways are compromised. The conditions under which safety is guaranteed are presented along with the resiliency mechanism itself, and our results are illustrated via simulation.
Meier, Roland, Lavrenovs, Arturs, Heinäaro, Kimmo, Gambazzi, Luca, Lenders, Vincent.
2021.
Towards an AI-powered Player in Cyber Defence Exercises. 2021 13th International Conference on Cyber Conflict (CyCon). :309–326.
Cyber attacks are becoming increasingly frequent, sophisticated, and stealthy. This makes it harder for cyber defence teams to keep up, forcing them to automate their defence capabilities in order to improve their reactivity and efficiency. Therefore, we propose a fully automated cyber defence framework that no longer needs support from humans to detect and mitigate attacks within a complex infrastructure. We design our framework based on a real-world case - Locked Shields - the world's largest cyber defence exercise. In this exercise, teams have to defend their networked infrastructure against attacks, while maintaining operational services for their users. Our framework architecture connects various cyber sensors with network, device, application, and user actuators through an artificial intelligence (AI)-powered automated team in order to dynamically secure the cyber environment. To the best of our knowledge, our framework is the first attempt towards a fully automated cyber defence team that aims at protecting complex environments from sophisticated attacks.
Kim, Jaewon, Ko, Woo-Hyun, Kumar, P. R..
2021.
Cyber-Security through Dynamic Watermarking for 2-rotor Aerial Vehicle Flight Control Systems. 2021 International Conference on Unmanned Aircraft Systems (ICUAS). :1277–1283.
We consider the problem of security for unmanned aerial vehicle flight control systems. To provide a concrete setting, we consider the security problem in the context of a helicopter which is compromised by a malicious agent that distorts elevation measurements to the control loop. This is a particular example of the problem of the security of stochastic control systems under erroneous observation measurements caused by malicious sensors within the system. In order to secure the control system, we consider dynamic watermarking, where a private random excitation signal is superimposed onto the control input of the flight control system. An attack detector at the actuator can then check if the reported sensor measurements are appropriately correlated with the private random excitation signal. This is done via two specific statistical tests whose violation signifies an attack. We apply dynamic watermarking technique to a 2-rotor-based 3-DOF helicopter control system test-bed. We demonstrate through both simulation and experimental results the performance of the attack detector on two attack models: a stealth attack, and a random bias injection attack.
Cheng, Xia, Shi, Junyang, Sha, Mo, Guo, Linke.
2021.
Launching Smart Selective Jamming Attacks in WirelessHART Networks. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications. :1–10.
As a leading industrial wireless standard, WirelessHART has been widely implemented to build wireless sensor-actuator networks (WSANs) in industrial facilities, such as oil refineries, chemical plants, and factories. For instance, 54,835 WSANs that implement the WirelessHART standard have been deployed globally by Emerson process management, a WirelessHART network supplier, to support process automation. While the existing research to improve industrial WSANs focuses mainly on enhancing network performance, the security aspects have not been given enough attention. We have identified a new threat to WirelessHART networks, namely smart selective jamming attacks, where the attacker first cracks the channel usage, routes, and parameter configuration of the victim network and then jams the transmissions of interest on their specific communication channels in their specific time slots, which makes the attacks energy efficient and hardly detectable. In this paper, we present this severe, stealthy threat by demonstrating the step-by-step attack process on a 50-node network that runs a publicly accessible WirelessHART implementation. Experimental results show that the smart selective jamming attacks significantly reduce the network reliability without triggering network updates.
Zheng, Shengbao, Shu, Shaolong, Lin, Feng.
2021.
Modeling and Control of Discrete Event Systems under Joint Sensor-Actuator Cyber Attacks. 2021 6th International Conference on Automation, Control and Robotics Engineering (CACRE). :216–220.
In this paper, we investigate joint sensor-actuator cyber attacks in discrete event systems. We assume that attackers can attack some sensors and actuators at the same time by altering observations and control commands. Because of the nondeterminism in observation and control caused by cyber attacks, the behavior of the supervised systems becomes nondeterministic and deviates from the target. We define two bounds on languages, an upper-bound and a lower-bound, to describe the nondeterministic behavior. We then use the upper-bound language to investigate the safety supervisory control problem under cyber attacks. After introducing CA-controllability and CA-observability, we successfully solve the supervisory control problem under cyber attacks.
Butchko, Daniel, Croteau, Brien, Kiriakidis, Kiriakos.
2021.
Cyber-Physical System Security of Surface Ships using Intelligent Constraints. 2021 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
Cyber-physical systems are vulnerable to attacks that can cause them to reach undesirable states. This paper provides a theoretical solution for increasing the resiliency of control systems through the use of a high-authority supervisor that monitors and regulates control signals sent to the actuator. The supervisor aims to determine the control signal limits that provide maximum freedom of operation while protecting the system. For this work, a cyber attack is assumed to overwrite the signal to the actuator with Gaussian noise. This assumption permits the propagation of a state covariance matrix through time. Projecting the state covariance matrix on the state space reveals a confidence ellipse that approximates the reachable set. The standard deviation is found so that the confidence ellipse is tangential to the danger area in the state space. The process is applied to ship dynamics where an ellipse in the state space is transformed to an arc in the plane of motion. The technique is validated through the simulation of a ship traveling through a narrow channel while under the influence of a cyber attack.
Dinky, Hemlata, Tanwar, Rajesh.
2021.
Enhancement of Security by Infrared Array Sensor Based IOT System. 2021 International Conference on Innovative Practices in Technology and Management (ICIPTM). :108–112.
In this research we have explained to set up an Infrared Array Sensor system that is IOT based in order to provide security at remote location. We have tried to Establishment of cloud environment to host IOT application & Development of IOT Application using Asp.net with C\# programming platform. We have Integrated IOT with Infrared Array sensors in order to implement proposed work. In this research camera captures the external event and sent signal to Infrared grid array sensor. Internet of Things (IoT) would enable applications of utmost societal value including smart cities, smart grids & smart healthcare. For majority of such applications, strict dependability requirements are placed on IOT performance, & sensor data as well as actuator commands must be delivered reliably & timely.
Yixuan, Zhang, Qiwei, Xu, Sheng, Long, Zhihao, Cheng, Chao, Zhi.
2021.
Design of a New Micro Linear Actuator Owning Two-phase No-cross Planar Coils. 2021 IEEE 4th International Electrical and Energy Conference (CIEEC). :1–11.
This paper presents a new micro linear actuator design. The North-South (NS) permanent magnet array configuration is assembled as the mobile part. The fixed part is designed to two-phase planar coils with no crossings avoiding interferences between overlapped conductors. The analytical calculation of the permanent magnet array verifies the feasibility of the finite element simulation. And then electromagnetic optimizations based on simulation to maximize the average thrust and minimize thrust ripple. In order to deal with millimeter level structure design, a microfabrication approach is adopted to process the new micro linear actuator in silicon material. The new micro linear actuator is able to perform millimeter level displacement strokes along a single axis in the horizontal plane. The experimental results demonstrate that the new micro linear actuator is capable of delivering variable strokes up to 5 mm with a precision error of 30 μm in position closed loop control and realizes the maximum velocity of 26.62mm/s with maximum error of 4.92%.
González, Héctor, Díaz, Pablo, Toledo, José, Restrepo, Silvia Elena.
2021.
Design of an occupancy simulation system in Smart homes based on IoT. 2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA). :1–8.
This research work consists in to design a system of occupancy simulation in smart homes based on IoT, in order to create configurations within a home that make look like the daily behavior of home inhabitants. Due to the high rate of burglary in uninhabited places, reaching an 9% in average in 2019 in the Chilean case, technologies have been involved with greater emphasis on improving security systems, where the implementation of the Internet of Things will allow rapid action against the intruder detection in those places. The proposed IoT system is based on a motion sensor, actuators as relays and lights, Arduino platform to control system, and a Amazon Echo virtual assistant to interface with inhabitants. The main contribution of this prototype security system is the integration of different IoT (Adafruit, IFTTT) and control platforms (Arduino uno and NodeMCU), virtual assistant (Alexa) and actuators, which has features that can be replicated in larger processes and with a larger number of devices. The results demonstrate that security system create an environment occupied by owners without to be inside home, through sensors and actuators.