Biblio
In the past decade we have seen an active research community proposing attacks and defenses to Cyber-Physical Systems (CPS). Most of these attacks and defenses have been heuristic in nature, limiting the attacker to a set of predefined operations, and proposing defenses with unclear security guarantees. In this paper, we propose a generic adversary model that can capture any type of attack (our attacker is not constrained to follow specific attacks such as replay, delay, or bias) and use it to design security mechanisms with provable security guarantees. In particular, we propose a new secure design paradigm we call DARIA: Designing Actuators to Resist arbItrary Attacks. The main idea behind DARIA is the design of physical limits to actuators in order to prevent attackers from arbitrarily manipulating the system, irrespective of their point of attack (sensors or actuators) or the specific attack algorithm (bias, replay, delays, etc.). As far as we are aware, we are the first research team to propose the design of physical limits to actuators in a control loop in order to keep the system secure against attacks. We demonstrate the generality of our proposal on simulations of vehicular platooning and industrial processes.
Industrial control system (ICS) denotes a system consisting of actuators, control stations, and network that manages processes and functions in an industrial setting. The ICS community faces two major problems to keep pace with the broader trends of Industry 4.0: (1) a data rich, information poor (DRIP) syndrome, and (2) risk of financial and safety harms due to security breaches. In this paper, we propose a private cloud in the loop ICS architecture for real-time analytics that can bridge the gap between low data utilization and security hardening.
Industrial production plants traditionally include sensors for monitoring or documenting processes, and actuators for enabling corrective actions in cases of misconfigurations, failures, or dangerous events. With the advent of the IoT, embedded controllers link these `things' to local networks that often are of low power wireless kind, and are interconnected via gateways to some cloud from the global Internet. Inter-networked sensors and actuators in the industrial IoT form a critical subsystem while frequently operating under harsh conditions. It is currently under debate how to approach inter-networking of critical industrial components in a safe and secure manner.In this paper, we analyze the potentials of ICN for providing a secure and robust networking solution for constrained controllers in industrial safety systems. We showcase hazardous gas sensing in widespread industrial environments, such as refineries, and compare with IP-based approaches such as CoAP and MQTT. Our findings indicate that the content-centric security model, as well as enhanced DoS resistance are important arguments for deploying Information Centric Networking in a safety-critical industrial IoT. Evaluation of the crypto efforts on the RIOT operating system for content security reveal its feasibility for common deployment scenarios.
Nowadays, physical health of equipment controlled by Cyber-Physical Systems (CPS) is a significant concern. This paper reports a work, in which, a hardware is placed between Programmable Logic Controller (PLC) and the actuator as a solution. The proposed hardware operates in two conditions, i.e. passive and active. Operation of the proposed solution is based on the repetitive operational profile of the actuators. The normal operational profile of the actuator is fed to the protective hardware and is considered as the normal operating condition. In the normal operating condition, the middleware operates in its passive mode and simply monitors electronic signals passing between PLC and Actuator. In case of any malicious operation, the proposed hardware operates in its active mode and both slowly stops the actuator and sends an alert to SCADA server initiating execution of the actuator's emergency profile. Thus, the proposed hardware gains control over the actuator and prevents any physical damage on the operating devices. Two sample experiments are reported in which, results of implementing the proposed solution are reported and assessed. Results show that once the PLC sends incorrect data to actuator, the proposed hardware detects it as an anomaly. Therefore, it does not allow the PLC to send incorrect and unauthorized data pattern to its actuator. Significance of the paper is in introducing a solution to prevent destruction of physical devices apart from source or purpose of the encountered anomaly and apart from CPS functionality or PLC model and operation.
Cyber-Physical Systems (CPS), such as Water Distribution Networks (WDNs), deploy digital devices to monitor and control the behavior of physical processes. These digital devices, however, are susceptible to cyber and physical attacks, that may alter their functionality, and therefore the integrity of their measurements/actions. In practice, industrial control systems utilize simple control laws, which rely on various sensor measurements and algorithms which are expected to operate normally. To reduce the impact of a potential failure, operators may deploy redundant components; this however may not be useful, e.g., when a cyber attack at a PLC component occurs. In this work, we address the problem of reducing vulnerability to cyber-physical attacks in water distribution networks. This is achieved by augmenting the graph which describes the information flow from sensors to actuators, by adding new connections and algorithms, to increase the number of redundant cyber components. These, in turn, increase the \textitcyber-physical security level, which is defined in the present paper as the number of malicious attacks a CPS may sustain before becoming unable to satisfy the control requirements. A proof-of-concept of the approach is demonstrated over a simple WDN, with intuition on how this can be used to increase the cyber-physical security level of the system.
The integration of modern information technologies with industrial control systems has created an enormous interest in the security of industrial control, however, given the cost, variety, and industry practices, it is hard for researchers to test and deploy security solutions in real-world systems. Industrial control testbeds can be used as tools to test security solutions before they are deployed, and in this paper we extend our previous work to develop open-source virtual industrial control testbeds where computing and networking components are emulated and virtualized, and the physical system is simulated through differential equations. In particular, we implement a nonlinear control system emulating a three-water tank with the associated sensors, PLCs, and actuators that communicate through an emulated network. In addition, we design unknown input observers (UIO) to not only detect that an attack is occurring, but also to identify the source of the malicious false data injections and mitigate its impact. Our system is available through Github to the academic community.
An attack detection scheme is proposed to detect data integrity attacks on sensors in Cyber-Physical Systems (CPSs). A combined fingerprint for sensor and process noise is created during the normal operation of the system. Under sensor spoofing attack, noise pattern deviates from the fingerprinted pattern enabling the proposed scheme to detect attacks. To extract the noise (difference between expected and observed value) a representative model of the system is derived. A Kalman filter is used for the purpose of state estimation. By subtracting the state estimates from the real system states, a residual vector is obtained. It is shown that in steady state the residual vector is a function of process and sensor noise. A set of time domain and frequency domain features is extracted from the residual vector. Feature set is provided to a machine learning algorithm to identify the sensor and process. Experiments are performed on two testbeds, a real-world water treatment (SWaT) facility and a water distribution (WADI) testbed. A class of zero-alarm attacks, designed for statistical detectors on SWaT are detected by the proposed scheme. It is shown that a multitude of sensors can be uniquely identified with accuracy higher than 90% based on the noise fingerprint.
Embedded and cyber-physical systems are critically dependent on the integrity of input and output signals for proper operation. Input signals acquired from sensors are assumed to correspond to the phenomenon the system is monitoring and responding to. Similarly, when such systems issue an actuation signal it is expected that the mechanism being controlled will respond in a predictable manner. Recent work has shown that sensors can be manipulated through the use of intentional electromagnetic interference (IEMI). In this work, we demonstrate thatboth input and output signals, analog and digital, can be remotely manipulated via the physical layer—thus bypassing traditional integrity mechanisms. Through the use of specially crafted IEMI it is shown that the physical layer signaling used for sensor input to, and digital communications between, embedded systems may be undermined to an attacker's advantage. Three attack scenarios are analyzed and their efficacy demonstrated. In the first scenario the analog sensing channel is manipulated to produce arbitrary sensor readings, while in the second it is shown that an attacker may induce bit flips in serial communications. Finally, a commonly used actuation signal is shown to be vulnerable to IEMI. The attacks are effective over appreciable distances and at low power.