Visible to the public Biblio

Filters: Keyword is actuator security  [Clear All Filters]
2021-01-25
Giraldo, J., Kafash, S. H., Ruths, J., Cárdenas, A. A..  2020.  DARIA: Designing Actuators to Resist Arbitrary Attacks Against Cyber-Physical Systems. 2020 IEEE European Symposium on Security and Privacy (EuroS P). :339–353.

In the past decade we have seen an active research community proposing attacks and defenses to Cyber-Physical Systems (CPS). Most of these attacks and defenses have been heuristic in nature, limiting the attacker to a set of predefined operations, and proposing defenses with unclear security guarantees. In this paper, we propose a generic adversary model that can capture any type of attack (our attacker is not constrained to follow specific attacks such as replay, delay, or bias) and use it to design security mechanisms with provable security guarantees. In particular, we propose a new secure design paradigm we call DARIA: Designing Actuators to Resist arbItrary Attacks. The main idea behind DARIA is the design of physical limits to actuators in order to prevent attackers from arbitrarily manipulating the system, irrespective of their point of attack (sensors or actuators) or the specific attack algorithm (bias, replay, delays, etc.). As far as we are aware, we are the first research team to propose the design of physical limits to actuators in a control loop in order to keep the system secure against attacks. We demonstrate the generality of our proposal on simulations of vehicular platooning and industrial processes.

Marasco, E. O., Quaglia, F..  2020.  AuthentiCAN: a Protocol for Improved Security over CAN. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :533–538.
The continuous progress of electronic equipments has influenced car manufacturers, leading to the integration of the latest infotainment technologies and providing connection to external devices, such as mobile phones. Modern cars work with ECUs (Electronic Control Units) that handle user interactions and sensor data, by also sending information to actuators using simple, reliable and efficient networks with fast protocols, like CAN (Controller Area Network). This is the most used vehicular protocol, which allows interconnecting different ECUs, making them interact in a synergic manner. On the down side, there is a security risk related to the exposition of malicious ECU's frames-possibly generated by compromised devices-which can lead to the possibility to remote control all the car equipments (like brakes and others) by an attacker. We propose a solution to this problem, designing an authentication and encryption system above CAN, called AuthentiCAN. Our proposal is tailored for the evolution of CAN called CAN-FD, and avoids the possibility for an attacker to inject malicious frames that are not discarded by the destination ECUs. Also, we avoid the possibility for an attacker to learn the interactions that occur across ECUs, with the objective of maliciously replaying messages-which would lead the actuator's logic to be no longer compliant with the actual data sources. We also present a simulation study of our solution, where we provide an assessment of its overhead, e.g. in terms of reduction of the throughput of data-unit transfer over CAN-FD, caused by the added security features.
Lanotte, R., Merro, M., Munteanu, A..  2020.  Runtime Enforcement for Control System Security. 2020 IEEE 33rd Computer Security Foundations Symposium (CSF). :246–261.
With the explosion of Industry 4.0, industrial facilities and critical infrastructures are transforming into “smart” systems that dynamically adapt to external events. The result is an ecosystem of heterogeneous physical and cyber components, such as programmable logic controllers, which are more and more exposed to cyber-physical attacks, i.e., security breaches in cyberspace that adversely affect the physical processes at the core of industrial control systems. We apply runtime enforcement techniques, based on an ad-hoc sub-class of Ligatti et al.'s edit automata, to enforce specification compliance in networks of potentially compromised controllers, formalised in Hennessy and Regan's Timed Process Language. We define a synthesis algorithm that, given an alphabet P of observable actions and an enforceable regular expression e capturing a timed property for controllers, returns a monitor that enforces the property e during the execution of any (potentially corrupted) controller with alphabet P and complying with the property e. Our monitors correct and suppress incorrect actions coming from corrupted controllers and emit actions in full autonomy when the controller under scrutiny is not able to do so in a correct manner. Besides classical properties, such as transparency and soundness, the proposed enforcement ensures non-obvious properties, such as polynomial complexity of the synthesis, deadlock- and diverge-freedom of monitored controllers, together with scalability when dealing with networks of controllers.
Dangal, P., Bloom, G..  2020.  Towards Industrial Security Through Real-time Analytics. 2020 IEEE 23rd International Symposium on Real-Time Distributed Computing (ISORC). :156–157.

Industrial control system (ICS) denotes a system consisting of actuators, control stations, and network that manages processes and functions in an industrial setting. The ICS community faces two major problems to keep pace with the broader trends of Industry 4.0: (1) a data rich, information poor (DRIP) syndrome, and (2) risk of financial and safety harms due to security breaches. In this paper, we propose a private cloud in the loop ICS architecture for real-time analytics that can bridge the gap between low data utilization and security hardening.

Rizki, R. P., Hamidi, E. A. Z., Kamelia, L., Sururie, R. W..  2020.  Image Processing Technique for Smart Home Security Based On the Principal Component Analysis (PCA) Methods. 2020 6th International Conference on Wireless and Telematics (ICWT). :1–4.
Smart home is one application of the pervasive computing branch of science. Three categories of smart homes, namely comfort, healthcare, and security. The security system is a part of smart home technology that is very important because the intensity of crime is increasing, especially in residential areas. The system will detect the face by the webcam camera if the user enters the correct password. Face recognition will be processed by the Raspberry pi 3 microcontroller with the Principal Component Analysis method using OpenCV and Python software which has outputs, namely actuators in the form of a solenoid lock door and buzzer. The test results show that the webcam can perform face detection when the password input is successful, then the buzzer actuator can turn on when the database does not match the data taken by the webcam or the test data and the solenoid door lock actuator can run if the database matches the test data taken by the sensor. webcam. The mean response time of face detection is 1.35 seconds.
Gracy, S., Milošević, J., Sandberg, H..  2020.  Actuator Security Index for Structured Systems. 2020 American Control Conference (ACC). :2993–2998.
Given a network with a set of vulnerable actuators (and sensors), the security index of an actuator equals the minimum number of sensors and actuators that needs to be compromised so as to conduct a perfectly undetectable attack using the said actuator. This paper deals with the problem of computing actuator security indices for discrete-time LTI network systems, using a structured systems framework. We show that the actuator security index is generic, that is for almost all realizations the actuator security index remains the same. We refer to such an index as generic security index (generic index) of an actuator. Given that the security index quantifies the vulnerability of a network, the generic index is quite valuable for large scale energy systems. Our second contribution is to provide graph-theoretic conditions for computing the generic index. The said conditions are in terms of existence of linkings on appropriately-defined directed (sub)graphs. Based on these conditions, we present an algorithm for computing the generic index.
2020-01-13
Frey, Michael, Gündoğan, Cenk, Kietzmann, Peter, Lenders, Martine, Petersen, Hauke, Schmidt, Thomas C., Juraschek, Felix, Wählisch, Matthias.  2019.  Security for the Industrial IoT: The Case for Information-Centric Networking. 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). :424–429.

Industrial production plants traditionally include sensors for monitoring or documenting processes, and actuators for enabling corrective actions in cases of misconfigurations, failures, or dangerous events. With the advent of the IoT, embedded controllers link these `things' to local networks that often are of low power wireless kind, and are interconnected via gateways to some cloud from the global Internet. Inter-networked sensors and actuators in the industrial IoT form a critical subsystem while frequently operating under harsh conditions. It is currently under debate how to approach inter-networking of critical industrial components in a safe and secure manner.In this paper, we analyze the potentials of ICN for providing a secure and robust networking solution for constrained controllers in industrial safety systems. We showcase hazardous gas sensing in widespread industrial environments, such as refineries, and compare with IP-based approaches such as CoAP and MQTT. Our findings indicate that the content-centric security model, as well as enhanced DoS resistance are important arguments for deploying Information Centric Networking in a safety-critical industrial IoT. Evaluation of the crypto efforts on the RIOT operating system for content security reveal its feasibility for common deployment scenarios.

Zegzhda, Dmitry, Lavrova, Daria, Khushkeev, Aleksei.  2019.  Detection of information security breaches in distributed control systems based on values prediction of multidimensional time series. 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS). :780–784.
Proposed an approach for information security breaches detection in distributed control systems based on prediction of multidimensional time series formed of sensor and actuator data.
Mohamed, Nader, Al-Jaroodi, Jameela.  2019.  A Middleware Framework to Address Security Issues in Integrated Multisystem Applications. 2019 IEEE International Systems Conference (SysCon). :1–6.
Integrating multiple programmable components and subsystems developed by different manufacturers into a final system (a system of systems) can create some security concerns. While there are many efforts for developing interoperability approaches to enable smooth, reliable and safe integration among different types of components to build final systems for different applications, less attention is usually given for the security aspects of this integration. This may leave the final systems exposed and vulnerable to potential security attacks. The issues elevate further when such systems are also connected to other networks such as the Internet or systems like fog and cloud computing. This issue can be found in important industrial applications like smart medical, smart manufacturing and smart city systems. As a result, along with performance, safety and reliability; multisystem integration must also be highly secure. This paper discusses the security issues instigated by such integration. In addition, it proposes a middleware framework to address the security issues for integrated multisystem applications.
Zhu, Yuting, Lin, Liyong, Su, Rong.  2019.  Supervisor Obfuscation Against Actuator Enablement Attack. 2019 18th European Control Conference (ECC). :1760–1765.
In this paper, we propose and address the problem of supervisor obfuscation against actuator enablement attack, in a common setting where the actuator attacker can eavesdrop the control commands issued by the supervisor. We propose a method to obfuscate an (insecure) supervisor to make it resilient against actuator enablement attack in such a way that the behavior of the original closed-loop system is preserved. An additional feature of the obfuscated supervisor, if it exists, is that it has exactly the minimum number of states among the set of all the resilient and behavior-preserving supervisors. Our approach involves a simple combination of two basic ideas: 1) a formulation of the problem of computing behavior-preserving supervisors as the problem of computing separating finite state automata under controllability and observability constraints, which can be tackled by using SAT solvers, and 2) the use of a recently proposed technique for the verification of attackability in our setting, with a normality assumption imposed on both the actuator attackers and supervisors.
Potrino, Giuseppe, de Rango, Floriano, Santamaria, Amilcare Francesco.  2019.  Modeling and evaluation of a new IoT security system for mitigating DoS attacks to the MQTT broker. 2019 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
In recent years, technology use has assumed an important role in the support of human activities. Intellectual work has become the main preferred human activity, while structured activities are going to become ever more automatized for increasing their efficiency. For this reason, we assist to the diffusion of ever more innovative devices able to face new emergent problems. These devices can interact with the environment and each other autonomously, taking decisions even without human control. This is the Internet of Things (IoT) phenomenon, favored by low cost, high mobility, high interaction and low power devices. This spread of devices has become uncontrolled, but security in this context continues to increase slowly. The purpose of this work is to model and evaluate a new IoT security system. The context is based on a generic IoT system in the presence of lightweight actuator and sensor nodes exchanging messages through Message Queue Telemetry Transport (MQTT) protocol. This work aims to increase the security of this protocol at application level, particularly mitigating Denial of Service (DoS) attacks. The system is based on the use of a host Intrusion Detection System (IDS) which applies a threshold based packet discarding policy to the different topics defined through MQTT.
Lipps, Christoph, Krummacker, Dennis, Schotten, Hans Dieter.  2019.  Securing Industrial Wireless Networks: Enhancing SDN with PhySec. 2019 Conference on Next Generation Computing Applications (NextComp). :1–7.
The requirements regarding network management defined by the continuously rising amount of interconnected devices in the industrial landscape turns it into an increasingly complex task. Associated by the fusion of technologies up to Cyber-Physical Production Systems (CPPS) and the Industrial Internet of Things (IIoT) with its multitude of communicating sensors and actuators new demands arise. In particular, the driving forces of this development, mobility and flexibility, are affecting today's networks. However, it is precisely these wireless solutions, as enabler for this advancement, that create new attack vectors and cyber-security threats. Furthermore, many cryptographic procedures, intended to secure the networks, require additional overhead, which is limiting the transmission bandwidth and speed as well. For this reason, new and efficient solutions must be developed and applied, in order to secure the existing, as well as the future, industrial communication networks. This work proposes a conceptual approach, consisting of a combination of Software-Defined Networking (SDN) and Physical Layer Security (PhySec) to satisfy the network security requirements. Use cases are explained that demonstrate the appropriateness of the approach and it is shown that this is a easy to use and resource efficient, but nevertheless sound and secure approach.
Lin, Liyong, Thuijsman, Sander, Zhu, Yuting, Ware, Simon, Su, Rong, Reniers, Michel.  2019.  Synthesis of Supremal Successful Normal Actuator Attackers on Normal Supervisors. 2019 American Control Conference (ACC). :5614–5619.
In this paper, we propose and develop an actuator attack model for discrete-event systems. We assume the actuator attacker partially observes the execution of the closed-loop system and eavesdrops the control commands issued by the supervisor. The attacker can modify each control command on a specified subset of attackable events. The goal of the actuator attacker is to remain covert until it can establish a successful attack and lead the attacked closed-loop system into generating certain damaging strings. We then present a characterization for the existence of a successful attacker and prove the existence of the supremal successful attacker, when both the supervisor and the attacker are normal. Finally, we present an algorithm to synthesize the supremal successful normal attackers.
Shen, Yitong, Wang, Lingfeng, Lau, Jim Pikkin, Liu, Zhaoxi.  2019.  A Robust Control Architecture for Mitigating Sensor and Actuator Attacks on PV Converter. 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia). :970–975.
The cybersecurity of the modern control system is becoming a critical issue to the cyber-physical systems (CPS). Mitigating potential cyberattacks in the control system is an important concern in the controller design to enhance the resilience of the overall system. This paper presents a novel robust control architecture for the PV converter system to mitigate the sensor and actuator attack and reduce the influence of the system uncertainty. The sensor and actuator attack is a vicious attack scenario when the attack signals are injected into the sensor and actuator in a CPS simultaneously. A p-synthesis robust control architecture is proposed to mitigate the sensor and actuator attack and limit the system uncertainty perturbations in a DC-DC photovoltaic (PV) converter. A new system state matrix and control architecture is presented by integrating the original system state, injected attack signals and system uncertainty perturbations. In the case study, the proposed μ-synthesis robust controller exhibits a robust performance in the face of the sensor and actuator attack.
Ivkic, Igor, Mauthe, Andreas, Tauber, Markus.  2019.  Towards a Security Cost Model for Cyber-Physical Systems. 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–7.
In times of Industry 4.0 and cyber-physical systems (CPS) providing security is one of the biggest challenges. A cyber attack launched at a CPS poses a huge threat, since a security incident may affect both the cyber and the physical world. Since CPS are very flexible systems, which are capable of adapting to environmental changes, it is important to keep an overview of the resulting costs of providing security. However, research regarding CPS currently focuses more on engineering secure systems and does not satisfactorily provide approaches for evaluating the resulting costs. This paper presents an interaction-based model for evaluating security costs in a CPS. Furthermore, the paper demonstrates in a use case driven study, how this approach could be used to model the resulting costs for guaranteeing security.
Kabiri, Peyman, Chavoshi, Mahdieh.  2019.  Destructive Attacks Detection and Response System for Physical Devices in Cyber-Physical Systems. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–6.

Nowadays, physical health of equipment controlled by Cyber-Physical Systems (CPS) is a significant concern. This paper reports a work, in which, a hardware is placed between Programmable Logic Controller (PLC) and the actuator as a solution. The proposed hardware operates in two conditions, i.e. passive and active. Operation of the proposed solution is based on the repetitive operational profile of the actuators. The normal operational profile of the actuator is fed to the protective hardware and is considered as the normal operating condition. In the normal operating condition, the middleware operates in its passive mode and simply monitors electronic signals passing between PLC and Actuator. In case of any malicious operation, the proposed hardware operates in its active mode and both slowly stops the actuator and sends an alert to SCADA server initiating execution of the actuator's emergency profile. Thus, the proposed hardware gains control over the actuator and prevents any physical damage on the operating devices. Two sample experiments are reported in which, results of implementing the proposed solution are reported and assessed. Results show that once the PLC sends incorrect data to actuator, the proposed hardware detects it as an anomaly. Therefore, it does not allow the PLC to send incorrect and unauthorized data pattern to its actuator. Significance of the paper is in introducing a solution to prevent destruction of physical devices apart from source or purpose of the encountered anomaly and apart from CPS functionality or PLC model and operation.

2019-01-21
Nicolaou, N., Eliades, D. G., Panayiotou, C., Polycarpou, M. M..  2018.  Reducing Vulnerability to Cyber-Physical Attacks in Water Distribution Networks. 2018 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater). :16–19.

Cyber-Physical Systems (CPS), such as Water Distribution Networks (WDNs), deploy digital devices to monitor and control the behavior of physical processes. These digital devices, however, are susceptible to cyber and physical attacks, that may alter their functionality, and therefore the integrity of their measurements/actions. In practice, industrial control systems utilize simple control laws, which rely on various sensor measurements and algorithms which are expected to operate normally. To reduce the impact of a potential failure, operators may deploy redundant components; this however may not be useful, e.g., when a cyber attack at a PLC component occurs. In this work, we address the problem of reducing vulnerability to cyber-physical attacks in water distribution networks. This is achieved by augmenting the graph which describes the information flow from sensors to actuators, by adding new connections and algorithms, to increase the number of redundant cyber components. These, in turn, increase the \textitcyber-physical security level, which is defined in the present paper as the number of malicious attacks a CPS may sustain before becoming unable to satisfy the control requirements. A proof-of-concept of the approach is demonstrated over a simple WDN, with intuition on how this can be used to increase the cyber-physical security level of the system.

Kafash, S. H., Giraldo, J., Murguia, C., Cárdenas, A. A., Ruths, J..  2018.  Constraining Attacker Capabilities Through Actuator Saturation. 2018 Annual American Control Conference (ACC). :986–991.
For LTI control systems, we provide mathematical tools - in terms of Linear Matrix Inequalities - for computing outer ellipsoidal bounds on the reachable sets that attacks can induce in the system when they are subject to the physical limits of the actuators. Next, for a given set of dangerous states, states that (if reached) compromise the integrity or safe operation of the system, we provide tools for designing new artificial limits on the actuators (smaller than their physical bounds) such that the new ellipsoidal bounds (and thus the new reachable sets) are as large as possible (in terms of volume) while guaranteeing that the dangerous states are not reachable. This guarantees that the new bounds cut as little as possible from the original reachable set to minimize the loss of system performance. Computer simulations using a platoon of vehicles are presented to illustrate the performance of our tools.
Han, K., Li, S., Wang, Z., Yang, X..  2018.  Actuator deception attack detection and estimation for a class of nonlinear systems. 2018 37th Chinese Control Conference (CCC). :5675–5680.
In this paper, an novel active safety monitoring system is constructed for a class of nonlinear discrete-time systems. The considered nonlinear system is subjected to unknown inputs, external disturbances, and possible unknown deception attacks, simultaneously. In order to secure the safety of control systems, an active attack estimator composed of state/output estimator, attack detector and attack/attacker action estimator is constructed to monitor the system running status. The analysis and synthesis of attack estimator is performed in the H∞performance optimization manner. The off-line calculation and on-line application of active attack estimator are summarized simultaneously. The effectiveness of the proposed results is finally verified by an numerical example.
Laszka, A., Abbas, W., Vorobeychik, Y., Koutsoukos, X..  2018.  Synergistic Security for the Industrial Internet of Things: Integrating Redundancy, Diversity, and Hardening. 2018 IEEE International Conference on Industrial Internet (ICII). :153–158.
As the Industrial Internet of Things (IIot) becomes more prevalent in critical application domains, ensuring security and resilience in the face of cyber-attacks is becoming an issue of paramount importance. Cyber-attacks against critical infrastructures, for example, against smart water-distribution and transportation systems, pose serious threats to public health and safety. Owing to the severity of these threats, a variety of security techniques are available. However, no single technique can address the whole spectrum of cyber-attacks that may be launched by a determined and resourceful attacker. In light of this, we consider a multi-pronged approach for designing secure and resilient IIoT systems, which integrates redundancy, diversity, and hardening techniques. We introduce a framework for quantifying cyber-security risks and optimizing IIoT design by determining security investments in redundancy, diversity, and hardening. To demonstrate the applicability of our framework, we present a case study in water-distribution systems. Our numerical evaluation shows that integrating redundancy, diversity, and hardening can lead to reduced security risk at the same cost.
Murillo, Andrés Felipe, Cómbita, Luis Francisco, Gonzalez, Andrea Calderón, Rueda, Sandra, Cardenas, Alvaro A., Quijano, Nicanor.  2018.  A Virtual Environment for Industrial Control Systems: A Nonlinear Use-Case in Attack Detection, Identification, and Response. Proceedings of the 4th Annual Industrial Control System Security Workshop. :25–32.

The integration of modern information technologies with industrial control systems has created an enormous interest in the security of industrial control, however, given the cost, variety, and industry practices, it is hard for researchers to test and deploy security solutions in real-world systems. Industrial control testbeds can be used as tools to test security solutions before they are deployed, and in this paper we extend our previous work to develop open-source virtual industrial control testbeds where computing and networking components are emulated and virtualized, and the physical system is simulated through differential equations. In particular, we implement a nonlinear control system emulating a three-water tank with the associated sensors, PLCs, and actuators that communicate through an emulated network. In addition, we design unknown input observers (UIO) to not only detect that an attack is occurring, but also to identify the source of the malicious false data injections and mitigate its impact. Our system is available through Github to the academic community.

Adina, Prasesh, Venkatnarayan, Raghav H., Shahzad, Muhammad.  2018.  Impacts & Detection of Network Layer Attacks on IoT Networks. Proceedings of the 1st ACM MobiHoc Workshop on Mobile IoT Sensing, Security, and Privacy. :2:1–2:6.
With the advent of the Internet of Things (IoT), wireless sensor and actuator networks, subsequently referred to as IoT networks (IoTNs), are proliferating at an unprecedented rate in several newfound areas such as smart cities, health care, and transportation, and consequently, securing them is of paramount importance. In this paper, we present several useful insights from an exploratory study of the impacts of network layer attacks on IoTNs. We envision that these insights will guide the design of future frameworks to defend against network layer attacks. We also present a preliminary such framework and demonstrate its effectiveness in detecting network layer attacks through experiments on a real IoTN test-bed.
Choi, Hongjun, Lee, Wen-Chuan, Aafer, Yousra, Fei, Fan, Tu, Zhan, Zhang, Xiangyu, Xu, Dongyan, Deng, Xinyan.  2018.  Detecting Attacks Against Robotic Vehicles: A Control Invariant Approach. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :801–816.
Robotic vehicles (RVs), such as drones and ground rovers, are a type of cyber-physical systems that operate in the physical world under the control of computing components in the cyber world. Despite RVs' robustness against natural disturbances, cyber or physical attacks against RVs may lead to physical malfunction and subsequently disruption or failure of the vehicles' missions. To avoid or mitigate such consequences, it is essential to develop attack detection techniques for RVs. In this paper, we present a novel attack detection framework to identify external, physical attacks against RVs on the fly by deriving and monitoring Control Invariants (CI). More specifically, we propose a method to extract such invariants by jointly modeling a vehicle's physical properties, its control algorithm and the laws of physics. These invariants are represented in a state-space form, which can then be implemented and inserted into the vehicle's control program binary for runtime invariant check. We apply our CI framework to eleven RVs, including quadrotor, hexarotor, and ground rover, and show that the invariant check can detect three common types of physical attacks – including sensor attack, actuation signal attack, and parameter attack – with very low runtime overhead.
Ahmed, Chuadhry Mujeeb, Ochoa, Martin, Zhou, Jianying, Mathur, Aditya P., Qadeer, Rizwan, Murguia, Carlos, Ruths, Justin.  2018.  NoisePrint: Attack Detection Using Sensor and Process Noise Fingerprint in Cyber Physical Systems. Proceedings of the 2018 on Asia Conference on Computer and Communications Security. :483–497.

An attack detection scheme is proposed to detect data integrity attacks on sensors in Cyber-Physical Systems (CPSs). A combined fingerprint for sensor and process noise is created during the normal operation of the system. Under sensor spoofing attack, noise pattern deviates from the fingerprinted pattern enabling the proposed scheme to detect attacks. To extract the noise (difference between expected and observed value) a representative model of the system is derived. A Kalman filter is used for the purpose of state estimation. By subtracting the state estimates from the real system states, a residual vector is obtained. It is shown that in steady state the residual vector is a function of process and sensor noise. A set of time domain and frequency domain features is extracted from the residual vector. Feature set is provided to a machine learning algorithm to identify the sensor and process. Experiments are performed on two testbeds, a real-world water treatment (SWaT) facility and a water distribution (WADI) testbed. A class of zero-alarm attacks, designed for statistical detectors on SWaT are detected by the proposed scheme. It is shown that a multitude of sensors can be uniquely identified with accuracy higher than 90% based on the noise fingerprint.

Selvaraj, Jayaprakash, Dayanıklı, Gökçen Y?lmaz, Gaunkar, Neelam Prabhu, Ware, David, Gerdes, Ryan M., Mina, Mani.  2018.  Electromagnetic Induction Attacks Against Embedded Systems. Proceedings of the 2018 on Asia Conference on Computer and Communications Security. :499–510.

Embedded and cyber-physical systems are critically dependent on the integrity of input and output signals for proper operation. Input signals acquired from sensors are assumed to correspond to the phenomenon the system is monitoring and responding to. Similarly, when such systems issue an actuation signal it is expected that the mechanism being controlled will respond in a predictable manner. Recent work has shown that sensors can be manipulated through the use of intentional electromagnetic interference (IEMI). In this work, we demonstrate thatboth input and output signals, analog and digital, can be remotely manipulated via the physical layer—thus bypassing traditional integrity mechanisms. Through the use of specially crafted IEMI it is shown that the physical layer signaling used for sensor input to, and digital communications between, embedded systems may be undermined to an attacker's advantage. Three attack scenarios are analyzed and their efficacy demonstrated. In the first scenario the analog sensing channel is manipulated to produce arbitrary sensor readings, while in the second it is shown that an attacker may induce bit flips in serial communications. Finally, a commonly used actuation signal is shown to be vulnerable to IEMI. The attacks are effective over appreciable distances and at low power.