Visible to the public Biblio

Filters: Keyword is Decentralized control  [Clear All Filters]
2023-07-19
Zhao, Hongwei, Qi, Yang, Li, Weilin.  2022.  Decentralized Power Management for Multi-active Bridge Converter. IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society. :1—6.
Multi-active bridge (MAB) converter has played an important role in the power conversion of renewable-based smart grids, electrical vehicles, and more/all electrical aircraft. However, the increase of MAB submodules greatly complicates the control architecture. In this regard, the conventional centralized control strategies, which rely on a single controller to process all the information, will be limited by the computation burden. To overcome this issue, this paper proposes a decentralized power management strategy for MAB converter. The switching frequencies of MAB submodules are adaptively regulated based on the submodule local information. Through this effort, flexible electrical power routing can be realized without communications among submodules. The proposed methodology not only relieves the computation burden of MAB control system, but also improves its modularity, flexibility, and expandability. Finally, the experiment results of a three-module MAB converter are presented for verification.
Moradi, Majid, Heydari, Mojtaba, Zarei, Seyed Fariborz.  2022.  Distributed Secondary Control for Voltage Restoration of ESSs in a DC Microgrid. 2022 13th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC). :431—436.
Due to the intermittent nature of renewable energy sources, the implementation of energy storage systems (ESSs) is crucial for the reliable operation of microgrids. This paper proposes a peer-to-peer distributed secondary control scheme for accurate voltage restoration of distributed ESS units in a DC microgrid. The presented control framework only requires local and neighboring information to function. Besides, the ESSs communicate with each other through a sparse network in a discrete fashion compared to existing approaches based on continuous data exchange. This feature ensures reliability, expandability, and flexibility of the proposed strategy for a more practical realization of distributed control paradigm. A simulation case study is presented using MATLAB/Simulink to illustrate the performance and effectiveness of the proposed control strategy.
2022-07-01
Rahimi, Farshad.  2021.  Distributed Control for Nonlinear Multi-Agent Systems Subject to Communication Delays and Cyber-Attacks: Applied to One-Link Manipulators. 2021 9th RSI International Conference on Robotics and Mechatronics (ICRoM). :24–29.
This note addresses the problem of distributed control for a class of nonlinear multi-agent systems over a communication graph. In many real practical systems, owing to communication limits and the vulnerability of communication networks to be overheard and modified by the adversary, consideration of communication delays and cyber-attacks in designing of the controller is important. To consider these challenges, in the presented approach, a distributed controller for a group of one-link flexible joint manipulators is provided which are connected via data delaying communication network in the presence of cyber-attacks. Sufficient conditions are provided to guarantee that the closed-loop system is stable with prescribed disturbance attenuation, and the parameter of the control law can be obtained by solving a set of linear matrix inequities (LMIs). Eventually, simulations results of four single-link manipulators are provided to demonstrate the performance of the introduced method.
2022-03-02
HAN, Yuqi, LIU, Jieying, LEI, Yunkai, LIU, Liyang, YE, Shengyong.  2021.  The Analysis and Application of Decentralized Cyber Layer and Distributed Security Control for Interconnected Conurbation Grids under Catastrophic Cascading Failures. 2021 3rd Asia Energy and Electrical Engineering Symposium (AEEES). :794–799.

The cluster-featured conurbation cyber-physical power system (CPPS) interconnected with tie-lines facing the hazards from catastrophic cascading failures. To achieve better real-time performance, enhance the autonomous ability and improve resilience for the clustered conurbation CPPS, the decentralized cyber structure and the corresponding distributed security control strategy is proposed. Facing failures, the real-time security control is incorporated to mitigate cascading failures. The distributed security control problem is solved reliably based on alternating direction method of multipliers (ADMM). The system overall resilience degradation index(SORDI) adopted reflects the influence of cascading failures on both the topological integrity and operational security. The case study illustrates the decentralized cyber layer and distributed control will decrease the data congestion and enhance the autonomous ability for clusters, thus perform better effectiveness in mitigating the cascading failures, especially in topological perspective. With the proposed distributed security control strategy, curves of SORDI show more characteristics of second-order percolation transition and the cascading failure threshold increase, which is more efficient when the initial failure size is near the threshold values or step-type inflection point. Because of the feature of geological aggregation under cluster-based attack, the efficiency of the cluster-focused distributed security control strategy is more obvious than other nodes attack circumstances.

2021-11-29
Braun, Sarah, Albrecht, Sebastian, Lucia, Sergio.  2020.  A Hierarchical Attack Identification Method for Nonlinear Systems. 2020 59th IEEE Conference on Decision and Control (CDC). :5035–5042.
Many autonomous control systems are frequently exposed to attacks, so methods for attack identification are crucial for a safe operation. To preserve the privacy of the subsystems and achieve scalability in large-scale systems, identification algorithms should not require global model knowledge. We analyze a previously presented method for hierarchical attack identification, that is embedded in a distributed control setup for systems of systems with coupled nonlinear dynamics. It is based on the exchange of local sensitivity information and ideas from sparse signal recovery. In this paper, we prove sufficient conditions under which the method is guaranteed to identify all components affected by some unknown attack. Even though a general class of nonlinear dynamic systems is considered, our rigorous theoretical guarantees are applicable to practically relevant examples, which is underlined by numerical experiments with the IEEE 30 bus power system.
2021-03-22
Yang, S., Liu, S., Huang, J., Su, H., Wang, H..  2020.  Control Conflict Suppressing and Stability Improving for an MMC Distributed Control System. IEEE Transactions on Power Electronics. 35:13735–13747.
Compared with traditional centralized control strategies, the distributed control systems significantly improve the flexibility and expandability of an modular multilevel converter (MMC). However, the stability issue in the MMC distributed control system with the presence of control loop coupling interactions is rarely discussed in existing research works. This article is to improve the stability of an MMC distributed control system by inhibiting the control conflict due to the coupling interactions among control loops with incomplete control information. By modeling the MMC distributed control system, the control loop coupling interactions are analyzed and the essential cause of control conflict is revealed. Accordingly, a control parameter design principle is proposed to effectively suppress the disturbances from the targeted control conflict and improve the MMC system stability. The rationality of the theoretical analysis and the effectiveness of the control parameter design principle are confirmed by simulation and experimental results.
2021-01-25
Zhang, T.-Y., Ye, D..  2020.  Distributed Secure Control Against Denial-of-Service Attacks in Cyber-Physical Systems Based on K-Connected Communication Topology. IEEE Transactions on Cybernetics. 50:3094–3103.
In this article, the security problem in cyber-physical systems (CPSs) against denial-of-service (DoS) attacks is studied from the perspectives of the designs of communication topology and distributed controller. To resist the DoS attacks, a new construction algorithm of the k-connected communication topology is developed based on the proposed necessary and sufficient criteria of the k-connected graph. Furthermore, combined with the k-connected topology, a distributed event-triggered controller is designed to guarantee the consensus of CPSs under mode-switching DoS (MSDoS) attacks. Different from the existing distributed control schemes, a new technology, that is, the extended Laplacian matrix method, is combined to design the distributed controller independent on the knowledge and the dwell time of DoS attack modes. Finally, the simulation example illustrates the superiority and effectiveness of the proposed construction algorithm and a distributed control scheme.
2020-10-06
Bidram, Ali, Damodaran, Lakshmisree, Fierro, Rafael.  2019.  Cybersecure Distributed Voltage Control of AC Microgrids. 2019 IEEE/IAS 55th Industrial and Commercial Power Systems Technical Conference (I CPS). :1—6.

In this paper, the cybersecurity of distributed secondary voltage control of AC microgrids is addressed. A resilient approach is proposed to mitigate the negative impacts of cyberthreats on the voltage and reactive power control of Distributed Energy Resources (DERs). The proposed secondary voltage control is inspired by the resilient flocking of a mobile robot team. This approach utilizes a virtual time-varying communication graph in which the quality of the communication links is virtualized and determined based on the synchronization behavior of DERs. The utilized control protocols on DERs ensure that the connectivity of the virtual communication graph is above a specific resilience threshold. Once the resilience threshold is satisfied the Weighted Mean Subsequence Reduced (WMSR) algorithm is applied to satisfy voltage restoration in the presence of malicious adversaries. A typical microgrid test system including 6 DERs is simulated to verify the validity of proposed resilient control approach.

2018-05-24
Ding, P., Wang, Y., Yan, G., Li, W..  2017.  DoS Attacks in Electrical Cyber-Physical Systems: A Case Study Using TrueTime Simulation Tool. 2017 Chinese Automation Congress (CAC). :6392–6396.

Recent years, the issue of cyber security has become ever more prevalent in the analysis and design of electrical cyber-physical systems (ECPSs). In this paper, we present the TrueTime Network Library for modeling the framework of ECPSs and focuses on the vulnerability analysis of ECPSs under DoS attacks. Model predictive control algorithm is used to control the ECPS under disturbance or attacks. The performance of decentralized and distributed control strategies are compared on the simulation platform. It has been proved that DoS attacks happen at dada collecting sensors or control instructions actuators will influence the system differently.

2018-05-09
Lu, Z., Chen, F., Cheng, G., Ai, J..  2017.  A secure control plane for SDN based on Bayesian Stackelberg Games. 2017 3rd IEEE International Conference on Computer and Communications (ICCC). :1259–1264.

Vulnerabilities of controller that is caused by separation of control and forwarding lead to a threat which attacker can take remote access detection in SDN. The current work proposes a controller architecture called secure control plane (SCP) that enhances security and increase the difficulty of the attack through a rotation of heterogeneous and multiple controllers. Specifically, a dynamic-scheduling method based on Bayesian Stackelberg Games is put forward to maximize security reward of defender during each migration. Secondly, introducing a self-cleaning mechanism combined with game strategy aims at improving the secure level and form a closed-loop defense mechanism; Finally, the experiments described quantitatively defender will get more secure gain based on the game strategy compared with traditional strategy (pure and random strategies), and the self-cleaning mechanism can make the control plane to be in a higher level of security.

2018-02-27
Ayar, M., Trevizan, R. D., Bretas, A. S., Latchman, H., Obuz, S..  2017.  A Robust Decentralized Control Framework for Enhancing Smart Grid Transient Stability. 2017 IEEE Power Energy Society General Meeting. :1–5.

In this paper, we present a decentralized nonlinear robust controller to enhance the transient stability margin of synchronous generators. Although, the trend in power system control is shifting towards centralized or distributed controller approaches, the remote data dependency of these schemes fuels cyber-physical security issues. Since the excessive delay or losing remote data affect severely the operation of those controllers, the designed controller emerges as an alternative for stabilization of Smart Grids in case of unavailability of remote data and in the presence of plant parametric uncertainties. The proposed controller actuates distributed storage systems such as flywheels in order to reduce stabilization time and it implements a novel input time delay compensation technique. Lyapunov stability analysis proves that all the tracking error signals are globally uniformly ultimately bounded. Furthermore, the simulation results demonstrate that the proposed controller outperforms traditional local power systems controllers such as Power System Stabilizers.

2015-05-05
Cam, H., Mouallem, P., Yilin Mo, Sinopoli, B., Nkrumah, B..  2014.  Modeling impact of attacks, recovery, and attackability conditions for situational awareness. Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 2014 IEEE International Inter-Disciplinary Conference on. :181-187.

A distributed cyber control system comprises various types of assets, including sensors, intrusion detection systems, scanners, controllers, and actuators. The modeling and analysis of these components usually require multi-disciplinary approaches. This paper presents a modeling and dynamic analysis of a distributed cyber control system for situational awareness by taking advantage of control theory and time Petri net. Linear time-invariant systems are used to model the target system, attacks, assets influences, and an anomaly-based intrusion detection system. Time Petri nets are used to model the impact and timing relationships of attacks, vulnerability, and recovery at every node. To characterize those distributed control systems that are perfectly attackable, algebraic and topological attackability conditions are derived. Numerical evaluation is performed to determine the impact of attacks on distributed control system.

2015-04-30
Cam, H., Mouallem, P., Yilin Mo, Sinopoli, B., Nkrumah, B..  2014.  Modeling impact of attacks, recovery, and attackability conditions for situational awareness. Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 2014 IEEE International Inter-Disciplinary Conference on. :181-187.

A distributed cyber control system comprises various types of assets, including sensors, intrusion detection systems, scanners, controllers, and actuators. The modeling and analysis of these components usually require multi-disciplinary approaches. This paper presents a modeling and dynamic analysis of a distributed cyber control system for situational awareness by taking advantage of control theory and time Petri net. Linear time-invariant systems are used to model the target system, attacks, assets influences, and an anomaly-based intrusion detection system. Time Petri nets are used to model the impact and timing relationships of attacks, vulnerability, and recovery at every node. To characterize those distributed control systems that are perfectly attackable, algebraic and topological attackability conditions are derived. Numerical evaluation is performed to determine the impact of attacks on distributed control system.