Visible to the public Biblio

Filters: Keyword is expandability  [Clear All Filters]
2019-08-05
Lei, S., Zewu, W., Kun, Z., Ruichen, S., Shuai, L..  2018.  Research and design of cryptography cloud framework. 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). :147–154.

Since the application mode of cryptography technology currently has different types in the cloud environment, a novel cryptography cloud framework was proposed, due to the non-expandability of cryptography resources. Through researching on the application models of the current encryption technology, the cryptography service demand under the cloud environment and the virtual structure of the cloud cryptography machine, this paper designed the framework of the cryptography cloud framework that provides cryptography services with the cloud computing mode. the design idea of the framework is expounded from two aspects include the function of modules and service flow of cryptography cloud, which resulted in the improvement of the flexibility of the application of cryptography technology in the cloud environment. Through the analysis of system function and management mode, it illustrated the availability and security of cryptography cloud framework. It was proved that cryptography cloud has the characteristics of high-availability in the implementation and experiment, and it can satisfy cryptography service demand in the cloud environment.

Pan, G., He, J., Wu, Q., Fang, R., Cao, J., Liao, D..  2018.  Automatic stabilization of Zigbee network. 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD). :224–227.

We present an intelligent system that focus on how to ensure the stability of ZigBee network automatically. First, we discussed on the character of ZigBee compared with WIFI. Pointed out advantage of ZigBee resides in security, stability, low power consumption and better expandability. Second, figuring out the shortcomings of ZigBee on application is that physical limitation of the frequency band and weak ability on diffraction, especially coming across a wall or a door in the actual environment of home. The third, to put forward a method which can be used to ensure the strength of ZigBee signal. The method is to detect the strength of ZigBee relay in advance. And then, to compare it with the threshold value which had been defined in previous. The threshold value of strength of ZigBee is the minimal and tolerable value which can ensure stable transmission of ZigBee. If the detected value is out of the range of threshold, system will prompt up warning message which can be used to hint user to add ZigBee reply between the original ZigBee node and ZigBee gateway.

Černý, Jakub, Boýanský, Branislav, Kiekintveld, Christopher.  2018.  Incremental Strategy Generation for Stackelberg Equilibria in Extensive-Form Games. Proceedings of the 2018 ACM Conference on Economics and Computation. :151–168.

Dynamic interaction appears in many real-world scenarios where players are able to observe (perhaps imperfectly) the actions of another player and react accordingly. We consider the baseline representation of dynamic games - the extensive form - and focus on computing Stackelberg equilibrium (SE), where the leader commits to a strategy to which the follower plays a best response. For one-shot games (e.g., security games), strategy-generation (SG) algorithms offer dramatic speed-up by incrementally expanding the strategy spaces. However, a direct application of SG to extensive-form games (EFGs) does not bring a similar speed-up since it typically results in a nearly-complete strategy space. Our contributions are twofold: (1) for the first time we introduce an algorithm that allows us to incrementally expand the strategy space to find a SE in EFGs; (2) we introduce a heuristic variant of the algorithm that is theoretically incomplete, but in practice allows us to find exact (or close-to optimal) Stackelberg equilibrium by constructing a significantly smaller strategy space. Our experimental evaluation confirms that we are able to compute SE by considering only a fraction of the strategy space that often leads to a significant speed-up in computation times.

Aigner, Alexander.  2018.  FALKE-MC: A Neural Network Based Approach to Locate Cryptographic Functions in Machine Code. Proceedings of the 13th International Conference on Availability, Reliability and Security. :2:1–2:8.
The localization and classification of cryptographic functions in binary files is a growing challenge in information security, not least because of the increasing use of such functions in malware. Nevertheless, it is still a time consuming and laborious task. Some of the most commonly used techniques are based on dynamic methods, signatures or manual reverse engineering. In this paper we present FALKE-MC, a novel framework that creates classifiers for arbitrary cryptographic algorithms from sample binaries. It processes multiple file formats and architectures and is easily expandable due to its modular design. Functions are automatically detected and features as well as constants are extracted. They are used to train a neural network, which can then be applied to classify functions in unknown binary files. The framework is fully automated, from the input of binary files and the creation of a classifier through to the output of classification results. In addition to that, it can deal with class imbalance between cryptographic and non-cryptographic samples during training. Our evaluation shows that this approach offers a high detection rate in combination with a low false positive rate. We are confident that FALKE-MC can accelerate the localization and classification of cryptographic functions in practice.
Liu, Jienan, Rahbarinia, Babak, Perdisci, Roberto, Du, Haitao, Su, Li.  2018.  Augmenting Telephone Spam Blacklists by Mining Large CDR Datasets. Proceedings of the 2018 on Asia Conference on Computer and Communications Security. :273–284.

Telephone spam has become an increasingly prevalent problem in many countries all over the world. For example, the US Federal Trade Commission's (FTC) National Do Not Call Registry's number of cumulative complaints of spam/scam calls reached 30.9 million submissions in 2016. Naturally, telephone carriers can play an important role in the fight against spam. However, due to the extremely large volume of calls that transit across large carrier networks, it is challenging to mine their vast amounts of call detail records (CDRs) to accurately detect and block spam phone calls. This is because CDRs only contain high-level metadata (e.g., source and destination numbers, call start time, call duration, etc.) related to each phone calls. In addition, ground truth about both benign and spam-related phone numbers is often very scarce (only a tiny fraction of all phone numbers can be labeled). More importantly, telephone carriers are extremely sensitive to false positives, as they need to avoid blocking any non-spam calls, making the detection of spam-related numbers even more challenging. In this paper, we present a novel detection system that aims to discover telephone numbers involved in spam campaigns. Given a small seed of known spam phone numbers, our system uses a combination of unsupervised and supervised machine learning methods to mine new, previously unknown spam numbers from large datasets of call detail records (CDRs). Our objective is not to detect all possible spam phone calls crossing a carrier's network, but rather to expand the list of known spam numbers while aiming for zero false positives, so that the newly discovered numbers may be added to a phone blacklist, for example. To evaluate our system, we have conducted experiments over a large dataset of real-world CDRs provided by a leading telephony provider in China, while tuning the system to produce no false positives. The experimental results show that our system is able to greatly expand on the initial seed of known spam numbers by up to about 250%.

Maggi, Federico, Balduzzi, Marco, Flores, Ryan, Gu, Lion, Ciancaglini, Vincenzo.  2018.  Investigating Web Defacement Campaigns at Large. Proceedings of the 2018 on Asia Conference on Computer and Communications Security. :443–456.
Website defacement is the practice of altering the web pages of a website after its compromise. The altered pages, calleddeface pages, can negatively affect the reputation and business of the victim site. Previous research has focused primarily on detection, rather than exploring the defacement phenomenon in depth. While investigating several defacements, we observed that the artifacts left by the defacers allow an expert analyst to investigate the actors' modus operandi and social structure, and expand from the single deface page to a group of related defacements (i.e., acampaign ). However, manually performing such analysis on millions of incidents is tedious, and poses scalability challenges. From these observations, we propose an automated approach that efficiently builds intelligence information out of raw deface pages. Our approach streamlines the analysts job by automatically recognizing defacement campaigns, and assigning meaningful textual labels to them. Applied to a comprehensive dataset of 13 million defacement records, from Jan. 1998 to Sept. 2016, our approach allowed us to conduct the first large-scale measurement on web defacement campaigns. In addition, our approach is meant to be adopted operationally by analysts to identify live campaigns on the field. We go beyond confirming anecdotal evidence. We analyze the social structure of modern defacers, which includes lone individuals as well as actors that cooperate with each others, or with teams, which evolve over time and dominate the scene. We conclude by drawing a parallel between the time line of World-shaping events and defacement campaigns, representing the evolution of the interests and orientation of modern defacers.
Graves, Catherine E., Ma, Wen, Sheng, Xia, Buchanan, Brent, Zheng, Le, Lam, Si-Ty, Li, Xuema, Chalamalasetti, Sai Rahul, Kiyama, Lennie, Foltin, Martin et al..  2018.  Regular Expression Matching with Memristor TCAMs for Network Security. Proceedings of the 14th IEEE/ACM International Symposium on Nanoscale Architectures. :65–71.

We propose using memristor-based TCAMs (Ternary Content Addressable Memory) to accelerate Regular Expression (RegEx) matching. RegEx matching is a key function in network security, where deep packet inspection finds and filters out malicious actors. However, RegEx matching latency and power can be incredibly high and current proposals are challenged to perform wire-speed matching for large scale rulesets. Our approach dramatically decreases RegEx matching operating power, provides high throughput, and the use of mTCAMs enables novel compression techniques to expand ruleset sizes and allows future exploitation of the multi-state (analog) capabilities of memristors. We fabricated and demonstrated nanoscale memristor TCAM cells. SPICE simulations investigate mTCAM performance at scale and a mTCAM power model at 22nm demonstrates 0.2 fJ/bit/search energy for a 36x400 mTCAM. We further propose a tiled architecture which implements a Snort ruleset and assess the application performance. Compared to a state-of-the-art FPGA approach (2 Gbps,\textbackslashtextasciitilde1W), we show x4 throughput (8 Gbps) at 60% the power (0.62W) before applying standard TCAM power-saving techniques. Our performance comparison improves further when striding (searching multiple characters) is considered, resulting in 47.2 Gbps at 1.3W for our approach compared to 3.9 Gbps at 630mW for the strided FPGA NFA, demonstrating a promising path to wire-speed RegEx matching on large scale rulesets.

Thapliyal, H., Ratajczak, N., Wendroth, O., Labrado, C..  2018.  Amazon Echo Enabled IoT Home Security System for Smart Home Environment. 2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS). :31–36.

Ever-driven by technological innovation, the Internet of Things (IoT) is continuing its exceptional evolution and growth into the common consumer space. In the wake of these developments, this paper proposes a framework for an IoT home security system that is secure, expandable, and accessible. Congruent with the ideals of the IoT, we are proposing a system utilizing an ultra-low-power wireless sensor network which would interface with a central hub via Bluetooth 4, commonly referred to as Bluetooth Low Energy (BLE), to monitor the home. Additionally, the system would interface with an Amazon Echo to accept user voice commands. The aforementioned central hub would also act as a web server and host an internet accessible configuration page from which users could monitor and customize their system. An internet-connected system would carry the capability to notify the users of system alarms via SMS or email. Finally, this proof of concept is intended to demonstrate expandability into other areas of home automation or building monitoring functions in general.

He, X., Zhang, Q., Han, Z..  2018.  The Hamiltonian of Data Center Network BCCC. 2018 IEEE 4th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing, (HPSC) and IEEE International Conference on Intelligent Data and Security (IDS). :147–150.

With the development of cloud computing the topology properties of data center network are important to the computing resources. Recently a data center network structure - BCCC is proposed, which is recursively built structure with many good properties. and expandability. The Hamiltonian and expandability in data center network structure plays an extremely important role in network communication. This paper described the Hamiltonian and expandability of the expandable data center network for BCCC structure, the important role of Hamiltonian and expandability in network traffic.

2018-11-14
Hernandez, Grant, Fowze, Farhaan, Tian, Dave(Jing), Yavuz, Tuba, Butler, Kevin R.B..  2017.  FirmUSB: Vetting USB Device Firmware Using Domain Informed Symbolic Execution. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :2245–2262.

The USB protocol has become ubiquitous, supporting devices from high-powered computing devices to small embedded devices and control systems. USB's greatest feature, its openness and expandability, is also its weakness, and attacks such as BadUSB exploit the unconstrained functionality afforded to these devices as a vector for compromise. Fundamentally, it is virtually impossible to know whether a USB device is benign or malicious. This work introduces FirmUSB, a USB-specific firmware analysis framework that uses domain knowledge of the USB protocol to examine firmware images and determine the activity that they can produce. Embedded USB devices use microcontrollers that have not been well studied by the binary analysis community, and our work demonstrates how lifters into popular intermediate representations for analysis can be built, as well as the challenges of doing so. We develop targeting algorithms and use domain knowledge to speed up these processes by a factor of 7 compared to unconstrained fully symbolic execution. We also successfully find malicious activity in embedded 8051 firmwares without the use of source code. Finally, we provide insights into the challenges of symbolic analysis on embedded architectures and provide guidance on improving tools to better handle this important class of devices.

Sommers, Joel, Durairajan, Ramakrishnan, Barford, Paul.  2017.  Automatic Metadata Generation for Active Measurement. Proceedings of the 2017 Internet Measurement Conference. :261–267.

Empirical research in the Internet is fraught with challenges. Among these is the possibility that local environmental conditions (e.g., CPU load or network load) introduce unexpected bias or artifacts in measurements that lead to erroneous conclusions. In this paper, we describe a framework for local environment monitoring that is designed to be used during Internet measurement experiments. The goals of our work are to provide a critical, expanded perspective on measurement results and to improve the opportunity for reproducibility of results. We instantiate our framework in a tool we call SoMeta, which monitors the local environment during active probe-based measurement experiments. We evaluate the runtime costs of SoMeta and conduct a series of experiments in which we intentionally perturb different aspects of the local environment during active probe-based measurements. Our experiments show how simple local monitoring can readily expose conditions that bias active probe-based measurement results. We conclude with a discussion of how our framework can be expanded to provide metadata for a broad range of Internet measurement experiments.

Ferrando, Roman, Stacey, Paul.  2017.  Classification of Device Behaviour in Internet of Things Infrastructures: Towards Distinguishing the Abnormal from Security Threats. Proceedings of the 1st International Conference on Internet of Things and Machine Learning. :57:1–57:7.

Increasingly Internet of Things (IoT) devices are being woven into the fabric of our physical world. With this rapidly expanding pervasive deployment of IoT devices, and supporting infrastructure, we are fast approaching the point where the problem of IoT based cyber-security attacks is a serious threat to industrial operations, business activity and social interactions that leverage IoT technologies. The number of threats and successful attacks against connected systems using IoT devices and services are increasing. The Internet of Things has several characteristics that present technological challenges to traditional cyber-security techniques. The Internet of Things requires a novel and dynamic security paradigm. This paper describes the challenges of securing the Internet of Things. A discussion detailing the state-of-the-art of IoT security is presented. A novel approach to security detection using streaming data analytics to classify and detect security threats in their early stages is proposed. Implementation methodologies and results of ongoing work to realise this new IoT cyber-security technique for threat detection are presented.

Jang, William, Chhabra, Adil, Prasad, Aarathi.  2017.  Enabling Multi-User Controls in Smart Home Devices. Proceedings of the 2017 Workshop on Internet of Things Security and Privacy. :49–54.

The Internet of Things (IoT) devices have expanded into many aspects of everyday life. As these smart home devices grow more popular, security concerns increase. Researchers have modeled the privacy and security threats for smart home devices, but have yet to fully address the problem of unintended user access within the home. Often, smart home devices are purchased by one of the family members and associated with the same family member's account, yet are shared by the entire home. Currently most devices implement a course-grained access control model where someone in the home either has complete access or no access. We provide scenarios that highlight the need for exible authorization control and seamless authentication in IoT devices, especially in multi-user environments. We present design recommendations for IoT device manufacturers to provide fine-grained access control and authentication and describe the challenges to meeting the expectations of all users within a home.

Aga, Shaizeen, Narayanasamy, Satish.  2017.  InvisiMem: Smart Memory Defenses for Memory Bus Side Channel. Proceedings of the 44th Annual International Symposium on Computer Architecture. :94–106.

A practically feasible low-overhead hardware design that provides strong defenses against memory bus side channel remains elusive. This paper observes that smart memory, memory with compute capability and a packetized interface, can dramatically simplify this problem. InvisiMem expands the trust base to include the logic layer in the smart memory to implement cryptographic primitives, which aid in addressing several memory bus side channel vulnerabilities efficiently. This allows the secure host processor to send encrypted addresses over the untrusted memory bus, and thereby eliminates the need for expensive address obfuscation techniques based on Oblivious RAM (ORAM). In addition, smart memory enables efficient solutions for ensuring freshness without using expensive Merkle trees, and mitigates memory bus timing channel using constant heart-beat packets. We demonstrate that InvisiMem designs have one to two orders of magnitude of lower overheads for performance, space, energy, and memory bandwidth, compared to prior solutions.

Zhang, J., Zheng, L., Gong, L., Gu, Z..  2018.  A Survey on Security of Cloud Environment: Threats, Solutions, and Innovation. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). :910–916.

With the extensive application of cloud computing technology developing, security is of paramount importance in Cloud Computing. In the cloud computing environment, surveys have been provided on several intrusion detection techniques for detecting intrusions. We will summarize some literature surveys of various attack taxonomy, which might cause various threats in cloud environment. Such as attacks in virtual machines, attacks on virtual machine monitor, and attacks in tenant network. Besides, we review massive existing solutions proposed in the literature, such as misuse detection techniques, behavior analysis of network traffic, behavior analysis of programs, virtual machine introspection (VMI) techniques, etc. In addition, we have summarized some innovations in the field of cloud security, such as CloudVMI, data mining techniques, artificial intelligence, and block chain technology, etc. At the same time, our team designed and implemented the prototype system of CloudI (Cloud Introspection). CloudI has characteristics of high security, high performance, high expandability and multiple functions.

2018-09-12
Yoon, Man-Ki, Liu, Bo, Hovakimyan, Naira, Sha, Lui.  2017.  VirtualDrone: Virtual Sensing, Actuation, and Communication for Attack-resilient Unmanned Aerial Systems. Proceedings of the 8th International Conference on Cyber-Physical Systems. :143–154.

As modern unmanned aerial systems (UAS) continue to expand the frontiers of automation, new challenges to security and thus its safety are emerging. It is now difficult to completely secure modern UAS platforms due to their openness and increasing complexity. We present the VirtualDrone Framework, a software architecture that enables an attack-resilient control of modern UAS. It allows the system to operate with potentially untrustworthy software environment by virtualizing the sensors, actuators, and communication channels. The framework provides mechanisms to monitor physical and logical system behaviors and to detect security and safety violations. Upon detection of such an event, the framework switches to a trusted control mode in order to override malicious system state and to prevent potential safety violations. We built a prototype quadcoper running an embedded multicore processor that features a hardware-assisted virtualization technology. We present extensive experimental study and implementation details, and demonstrate how the framework can ensure the robustness of the UAS in the presence of security breaches.

2018-02-15
Zhang, Ren, Preneel, Bart.  2017.  On the Necessity of a Prescribed Block Validity Consensus: Analyzing Bitcoin Unlimited Mining Protocol. Proceedings of the 13th International Conference on Emerging Networking EXperiments and Technologies. :108–119.

Bitcoin has not only attracted many users but also been considered as a technical breakthrough by academia. However, the expanding potential of Bitcoin is largely untapped due to its limited throughput. The Bitcoin community is now facing its biggest crisis in history as the community splits on how to increase the throughput. Among various proposals, Bitcoin Unlimited recently became the most popular candidate, as it allows miners to collectively decide the block size limit according to the real network capacity. However, the security of BU is heatedly debated and no consensus has been reached as the issue is discussed in different miner incentive models. In this paper, we systematically evaluate BU's security with three incentive models via testing the two major arguments of BU supporters: the block validity consensus is not necessary for BU's security; such consensus would emerge in BU out of economic incentives. Our results invalidate both arguments and therefore disprove BU's security claims. Our paper further contributes to the field by addressing the necessity of a prescribed block validity consensus for cryptocurrencies.

2018-01-10
Bai, Jiale, Ni, Bingbing, Wang, Minsi, Shen, Yang, Lai, Hanjiang, Zhang, Chongyang, Mei, Lin, Hu, Chuanping, Yao, Chen.  2017.  Deep Progressive Hashing for Image Retrieval. Proceedings of the 2017 ACM on Multimedia Conference. :208–216.

This paper proposes a novel recursive hashing scheme, in contrast to conventional "one-off" based hashing algorithms. Inspired by human's "nonsalient-to-salient" perception path, the proposed hashing scheme generates a series of binary codes based on progressively expanded salient regions. Built on a recurrent deep network, i.e., LSTM structure, the binary codes generated from later output nodes naturally inherit information aggregated from previously codes while explore novel information from the extended salient region, and therefore it possesses good scalability property. The proposed deep hashing network is trained via minimizing a triplet ranking loss, which is end-to-end trainable. Extensive experimental results on several image retrieval benchmarks demonstrate good performance gain over state-of-the-art image retrieval methods and its scalability property.

2017-05-18
Venkat, Ashish, Shamasunder, Sriskanda, Shacham, Hovav, Tullsen, Dean M..  2016.  HIPStR: Heterogeneous-ISA Program State Relocation. Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems. :727–741.

Heterogeneous Chip Multiprocessors have been shown to provide significant performance and energy efficiency gains over homogeneous designs. Recent research has expanded the dimensions of heterogeneity to include diverse Instruction Set Architectures, called Heterogeneous-ISA Chip Multiprocessors. This work leverages such an architecture to realize substantial new security benefits, and in particular, to thwart Return-Oriented Programming. This paper proposes a novel security defense called HIPStR – Heterogeneous-ISA Program State Relocation – that performs dynamic randomization of run-time program state, both within and across ISAs. This technique outperforms the state-of-the-art just-in-time code reuse (JIT-ROP) defense by an average of 15.6%, while simultaneously providing greater security guarantees against classic return-into-libc, ROP, JOP, brute force, JIT-ROP, and several evasive variants.

Karimian, Nima, Wortman, Paul A., Tehranipoor, Fatemeh.  2016.  Evolving Authentication Design Considerations for the Internet of Biometric Things (IoBT). Proceedings of the Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis. :10:1–10:10.

The Internet of Things (IoT) is a design implementation of embedded system design that connects a variety of devices, sensors, and physical objects to a larger connected network (e.g. the Internet) which requires human-to-human or human-to-computer interaction. While the IoT is expected to expand the user's connectivity and everyday convenience, there are serious security considerations that come into account when using the IoT for distributed authentication. Furthermore the incorporation of biometrics to IoT design brings about concerns of cost and implementing a 'user-friendly' design. In this paper, we focus on the use of electrocardiogram (ECG) signals to implement distributed biometrics authentication within an IoT system model. Our observations show that ECG biometrics are highly reliable, more secure, and easier to implement than other biometrics.

Lee, Seung Ji.  2016.  Citywide Management of Media Facades: Case Study of Seoul City. Proceedings of the 3rd Conference on Media Architecture Biennale. :11:1–11:4.

Due to the evolution of LED lighting and information technology, the application of media facades has expanded rapidly. Despite the positive aspects of media facades, the growth of them can cause light pollution and add to the confusion of the city. This study analyzes the Seoul case which implements citywide management with a master plan for media facades. Through this, the study aims to investigate the meaning of citywide management of media facades installed on individual buildings. Firstly, it investigates the conditions of media facades in Seoul City. The identified problems prove the necessity of the citywide management for media facades. Secondly, it analyzed the progress of media facades regulation of Seoul City. Management target has changed from the indiscreet installation for the individual media facades to further inducing the attractive media facade for overall Seoul City. For this, the 'Seoul Media Facade Management MasterPlan' was drafted to establish citywide management by the Seoul government. Thirdly, it analyzed the MasterPlan. The management tools in the MasterPlan are classified into regional management, elemental management, and specialization plans, each having detailed approaches. Finally, the study discussed the meaning of citywide management in the aspect that media facades are the cultural asset to the city, that the regional differentiation is adopted, and that the continuous maintenance for both of the hardware and content) is important. Media facades utilizing the facade of buildings are recognized as an element of urban landscapes securing the publicness, contributing to the vitalization of the area, and finally providing pleasure to the citizens.

Fedosov, Anton, Ojala, Jarno, Niforatos, Evangelos, Olsson, Thomas, Langheinrich, Marc.  2016.  Mobile First?: Understanding Device Usage Practices in Novel Content Sharing Services Proceedings of the 20th International Academic Mindtrek Conference. :198–207.

Today's mobile app economy has greatly expanded the types of "things" people can share –- spanning from new types of digital content like physiological data (e.g., workouts) to physical things like apartments and work tools ("sharing economy"). To understand whether mobile platforms provide adequate support for such novel sharing services, we surveyed 200 participants about their experiences with six types of emergent sharing services. For each domain we elicited device usage practices and identified corresponding device selection criteria. Our analysis suggests that, despite contemporary mobile first design efforts, desktop interfaces of emergent content sharing services are often considered more efficient and easier to use –- both for sharing and access control tasks (i.e., privacy). Based on our findings, we outline device-related design and research opportunities in this space.

Schweitzer, Nadav, Stulman, Ariel, Shabtai, Asaf.  2016.  Neighbor Contamination to Achieve Complete Bottleneck Control. Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems. :247–253.

Black-holes, gray-holes and, wormholes, are devastating to the correct operation of any network. These attacks (among others) are based on the premise that packets will travel through compromised nodes, and methods exist to coax routing into these traps. Detection of these attacks are mainly centered around finding the subversion in action. In networks, bottleneck nodes -- those that sit on many potential routes between sender and receiver -- are an optimal location for compromise. Finding naturally occurring path bottlenecks, however, does not entitle network subversion, and as such are more difficult to detect. The dynamic nature of mobile ad-hoc networks (manets) causes ubiquitous routing algorithms to be even more susceptible to this class of attacks. Finding perceived bottlenecks in an olsr based manet, is able to capture between 50%-75% of data. In this paper we propose a method of subtly expanding perceived bottlenecks into complete bottlenecks, raising capture rate up to 99%; albeit, at high cost. We further tune the method to reduce cost, and measure the corresponding capture rate.

Dupuis, Marc, Khadeer, Samreen.  2016.  Curiosity Killed the Organization: A Psychological Comparison Between Malicious and Non-Malicious Insiders and the Insider Threat. Proceedings of the 5th Annual Conference on Research in Information Technology. :35–40.

Insider threats remain a significant problem within organizations, especially as industries that rely on technology continue to grow. Traditionally, research has been focused on the malicious insider; someone that intentionally seeks to perform a malicious act against the organization that trusts him or her. While this research is important, more commonly organizations are the victims of non-malicious insiders. These are trusted employees that are not seeking to cause harm to their employer; rather, they misuse systems-either intentional or unintentionally-that results in some harm to the organization. In this paper, we look at both by developing and validating instruments to measure the behavior and circumstances of a malicious insider versus a non-malicious insider. We found that in many respects their psychological profiles are very similar. The results are also consistent with other research on the malicious insider from a personality standpoint. We expand this and also find that trait negative affect, both its higher order dimension and the lower order dimensions, are highly correlated with insider threat behavior and circumstances. This paper makes four significant contributions: 1) Development and validation of survey instruments designed to measure the insider threat; 2) Comparison of the malicious insider with the non-malicious insider; 3) Inclusion of trait affect as part of the psychological profile of an insider; 4) Inclusion of a measure for financial well-being, and 5) The successful use of survey research to examine the insider threat problem.

Landwehr, Carl E..  2016.  How Can We Enable Privacy in an Age of Big Data Analytics? Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics. :47–47.

Even though some seem to think privacy is dead, we are all still wearing clothes, as Bruce Schneier observed at a recent conference on surveillance[1]. Yet big data and big data analytics are leaving some of us feeling a bit more naked than before. This talk will provide some personal observations on privacy today and then outline some research areas where progress is needed to enable society to gain the benefits of analyzing large datasets without giving up more privacy than necessary. Not since the early 1970s, when computing pioneer Willis Ware chaired the committee that produced the initial Fair Information Practice Principles [2] has privacy been so much in the U.S. public eye. Snowden's revelations, as well as a growing awareness that merely living our lives seems to generate an expanding "digital exhaust." Have triggered many workshops and meetings. A national strategy for privacy research is in preparation by a Federal interagency group. The ability to analyze large datasets rapidly and to extract commercially useful insights from them is spawning new industries. Must this industrial growth come at the cost of substantial privacy intrusions?