Biblio
Software Defined Radio (SDR) can move the complicated signal processing and handling procedures involved in communications from radio equipment into computer software. Consequently, SDR equipment could consist of only a few chips connected to an antenna. In this paper, we present an implemented SDR testbed, which consists of four complete SDR nodes. Using the designed testbed, we have conducted two case studies. The first is designed to facilitate video transmission via adaptive LTE links. Our experimental results demonstrate that adaptive LTE link video transmission could reduce the bandwidth usage for data transmission. In the second case study, we perform UE location estimation by leveraging the signal strength from nearby cell towers, pertinent to various applications, such as public safety and disaster rescue scenarios where GPS (Global Position System) is not available (e.g., indoor environment). Our experimental results show that it is feasible to accurately derive the location of a UE (User Equipment) by signal strength. In addition, we design a Hardware In the Loop (HIL) simulation environment using the Vienna LTE simulator, srsLTE library, and our SDR testbed. We develop a software wrapper to connect the Vienna LTE simulator to our SDR testbed via the srsLTE library. Our experimental results demonstrate the comparative performance of simulated UEs and eNodeBs against real SDR UEs and eNodeBs, as well as how a simulated environment can interact with a real-world implementation.
Wikipedia is one of the most popular information platforms on the Internet. The user access pattern to Wikipedia pages depends on their relevance in the current worldwide social discourse. We use publically available statistics about the top-1000 most popular pages on each day to estimate the efficiency of caches for support of the platform. While the data volumes are moderate, the main goal of Wikipedia caches is to reduce access times for page views and edits. We study the impact of most popular pages on the achievable cache hit rate in comparison to Zipf request distributions and we include daily dynamics in popularity.
The wireless spectrum is a scarce resource, and the number of wireless terminals is constantly growing. One way to mitigate this strong constraint for wireless traffic is the use of dynamic mechanisms to utilize the spectrum, such as cognitive and software-defined radios. This is especially important for the upcoming wireless sensor and actuator networks in aircraft, where real-time guarantees play an important role in the network. Future wireless networks in aircraft need to be scalable, cater to the specific requirements of avionics (e.g., standardization and certification), and provide interoperability with existing technologies. In this paper, we demonstrate that dynamic network reconfigurability is a solution to the aforementioned challenges. We supplement this claim by surveying several flexible approaches in the context of wireless sensor and actuator networks in aircraft. More specifically, we examine the concept of dynamic resource management, accomplished through more flexible transceiver hardware and by employing dedicated spectrum agents. Subsequently, we evaluate the advantages of cross-layer network architectures which overcome the fixed layering of current network stacks in an effort to provide quality of service for event-based and time-triggered traffic. Lastly, the challenges related to implementation of the aforementioned mechanisms in wireless sensor and actuator networks in aircraft are elaborated, and key requirements to future research are summarized.
In the age of IOT, as more and more devices are getting connected to the internet through wireless networks, a better security infrastructure is required to protect these devices from massive attacks. For long SSIDs and passwords have been used to authenticate and secure Wi-Fi networks. But the SSID and password combination is vulnerable to security exploits like phishing and brute-forcing. In this paper, a completely automated Wi-Fi authentication system is proposed, that generates Time-based One-Time Passwords (TOTP) to secure Wi-Fi networks. This approach aims to black box the process of connecting to a Wi-Fi network for the user and the process of generating periodic secure passwords for the network without human intervention.
Tactical networks are generally simple ad-hoc networks in design, however, this simple design often gets complicated, when heterogeneous wireless technologies have to work together to enable seamless multi-hop communications across multiple sessions. In recent years, there has been some significant advances in computational, radio, localization, and networking te, and session's rate i.e., aggregate capacity averaged over a 4-time-slot frame)chnologies, which motivate a clean slate design of the control plane for multi-hop tactical wireless networks. In this paper, we develop a global network optimization framework, which characterizes the control plane for multi-hop wireless tactical networks. This framework abstracts the underlying complexity of tactical wireless networks and orchestrates the the control plane functions. Specifically, we develop a cross-layer optimization framework, which characterizes the interaction between the physical, link, and network layers. By applying the framework to a throughput maximization problem, we show how the proposed framework can be utilized to solve a broad range of wireless multi-hop tactical networking problems.
The wireless boundaries of networks are becoming increasingly important from a security standpoint as the proliferation of 802.11 WiFi technology increases. Concurrently, the complexity of 802.11 access point implementation is rapidly outpacing the standardization process. The result is that nascent wireless functionality management is left up to the individual provider's implementation, which creates new vulnerabilities in wireless networks. One such functional improvement to 802.11 is the virtual access point (VAP), a method of broadcasting logically separate networks from the same physical equipment. Network reconnaissance benefits from VAP identification, not only because network topology is a primary aim of such reconnaissance, but because the knowledge that a secure network and an insecure network are both being broadcast from the same physical equipment is tactically relevant information. In this work, we present a novel graph-theoretic approach to VAP identification which leverages a body of research concerned with establishing community structure. We apply our approach to both synthetic data and a large corpus of real-world data to demonstrate its efficacy. In most real-world cases, near-perfect blind identification is possible highlighting the effectiveness of our proposed VAP identification algorithm.
Security threats such as jamming and route manipulation can have significant consequences on the performance of modern wireless networks. To increase the efficacy and stealthiness of such threats, a number of extremely challenging, next-generation cross-layer attacks have been recently unveiled. Although existing research has thoroughly addressed many single-layer attacks, the problem of detecting and mitigating cross-layer attacks still remains unsolved. For this reason, in this paper we propose a novel framework to analyze and address cross-layer attacks in wireless networks. Specifically, our framework consists of a detection and a mitigation component. The attack detection component is based on a Bayesian learning detection scheme that constructs a model of observed evidence to identify stealthy attack activities. The mitigation component comprises a scheme that achieves the desired trade-off between security and performance. We specialize and evaluate the proposed framework by considering a specific cross-layer attack that uses jamming as an auxiliary tool to achieve route manipulation. Simulations and experimental results obtained with a testbed made up by USRP software-defined radios demonstrate the effectiveness of the proposed methodology.
Cooperative MIMO communication is a promising technology which enables realistic solution for improving communication performance with MIMO technique in wireless networks that are composed of size and cost constrained devices. However, the security problems inherent to cooperative communication also arise. Cryptography can ensure the confidentiality in the communication and routing between authorized participants, but it usually cannot prevent the attacks from compromised nodes which may corrupt communications by sending garbled signals. In this paper, we propose a cross-layered approach to enhance the security in query-based cooperative MIMO sensor networks. The approach combines efficient cryptographic technique implemented in upper layer with a novel information theory based compromised nodes detection algorithm in physical layer. In the detection algorithm, a cluster of K cooperative nodes are used to identify up to K - 1 active compromised nodes. When the compromised nodes are detected, the key revocation is performed to isolate the compromised nodes and reconfigure the cooperative MIMO sensor network. During this process, beamforming is used to avoid the information leaking. The proposed security scheme can be easily modified and applied to cognitive radio networks. Simulation results show that the proposed algorithm for compromised nodes detection is effective and efficient, and the accuracy of received information is significantly improved.
As the use of wireless technologies increases significantly due to ease of deployment, cost-effectiveness and the increase in bandwidth, there is a critical need to make the wireless communications secure, and resilient to attacks or faults (malicious or natural). Wireless communications are inherently prone to cyberattacks due to the open access to the medium. While current wireless protocols have addressed the privacy issues, they have failed to provide effective solutions against denial of service attacks, session hijacking and jamming attacks. In this paper, we present a resilient wireless communication architecture based on Moving Target Defense, and Software Defined Radios (SDRs). The approach achieves its resilient operations by randomly changing the runtime characteristics of the wireless communications channels between different wireless nodes to make it extremely difficult to succeed in launching attacks. The runtime characteristics that can be changed include packet size, network address, modulation type, and the operating frequency of the channel. In addition, the lifespan for each configuration will be random. To reduce the overhead in switching between two consecutive configurations, we use two radio channels that are selected at random from a finite set of potential channels, one will be designated as an active channel while the second acts as a standby channel. This will harden the wireless communications attacks because the attackers have no clue on what channels are currently being used to exploit existing vulnerability and launch an attack. The experimental results and evaluation show that our approach can tolerate a wide range of attacks (Jamming, DOS and session attacks) against wireless networks.
It is estimated that 50% of the global population lives in urban areas occupying just 0.4% of the Earth's surface. Understanding urban activity constitutes monitoring population density and its changes over time, in urban environments. Currently, there are limited mechanisms to non-intrusively monitor population density in real-time. The pervasive use of cellular phones in urban areas is one such mechanism that provides a unique opportunity to study population density by monitoring the mobility patterns in near real-time. Cellular carriers such as AT&T harvest such data through their cell towers; however, this data is proprietary and the carriers restrict access, due to privacy concerns. In this work, we propose a system that passively senses the population density and infers mobility patterns in an urban area by monitoring power spectral density in cellular frequency bands using periodic beacons from each cellphone without knowing who and where they are located. A wireless sensor network platform is being developed to perform spectral monitoring along with environmental measurements. Algorithms are developed to generate real-time fine-resolution population estimates.
Spoofing is a serious threat to the widespread use of Global Navigation Satellite Systems (GNSSs) such as GPS and can be expected to play an important role in the security of many future IoT systems that rely on time, location, or navigation information. In this paper, we focus on the technique of multi-receiver GPS spoofing detection, so far only proposed theoretically. This technique promises to detect malicious spoofing signals by making use of the reported positions of several GPS receivers deployed in a fixed constellation. We scrutinize the assumptions of prior work, in particular the error models, and investigate how these models and their results can be improved due to the correlation of errors at co-located receiver positions. We show that by leveraging spatial noise correlations, the false acceptance rate of the countermeasure can be improved while preserving the sensitivity to attacks. As a result, receivers can be placed significantly closer together than previously expected, which broadens the applicability of the countermeasure. Based on theoretical and practical investigations, we build the first realization of a multi-receiver countermeasure and experimentally evaluate its performance both in authentic and in spoofing scenarios.
Ubiquitous WiFi infrastructure and smart phones offer a great opportunity to study physical activities. In this paper, we present MobiCamp, a large-scale testbed for studying mobility-related activities of residents on a campus. MobiCamp consists of \textasciitilde2,700 APs, \textasciitilde95,000 smart phones, and an App with \textasciitilde2,300 opt-in volunteer users. More specifically, we capture how mobile users interact with different types of buildings, with other users, and with classroom courses, etc. To achieve this goal, we first obtain a relatively complete coverage of the users' mobility traces by utilizing four types of information from SNMP and by relaxing the location granularity to roughly at the room level. Then the popular App provides user attributes (grade, gender, etc.) and fine-grained behavior information (phone usages, course timetables, etc.) of the sampled population. These detailed mobile data is then correlated with the mobility traces from the SNMP to estimate the entire campus population's physical activities. We use two applications to show the power of MobiCamp.
We study the trade-off between the benefits obtained by communication, vs. the risks due to exposure of the location of the transmitter. To study this problem, we introduce a game between two teams of mobile agents, the P-bots team and the E-bots team. The E-bots attempt to eavesdrop and collect information, while evading the P-bots; the P-bots attempt to prevent this by performing patrol and pursuit. The game models a typical use-case of micro-robots, i.e., their use for (industrial) espionage. We evaluate strategies for both teams, using analysis and simulations.
With its high penetration rate and relatively good clock accuracy, smartphones are replacing watches in several market segments. Modern smartphones have more than one clock source to complement each other: NITZ (Network Identity and Time Zone), NTP (Network Time Protocol), and GNSS (Global Navigation Satellite System) including GPS. NITZ information is delivered by the cellular core network, indicating the network name and clock information. NTP provides a facility to synchronize the clock with a time server. Among these clock sources, only NITZ and NTP are updated without user interaction, as location services require manual activation. In this paper, we analyze security aspects of these clock sources and their impact on security features of modern smartphones. In particular, we investigate NITZ and NTP procedures over cellular networks (2G, 3G and 4G) and Wi-Fi communication respectively. Furthermore, we analyze several European, Asian, and American cellular networks from NITZ perspective. We identify three classes of vulnerabilities: specification issues in a cellular protocol, configurational issues in cellular network deployments, and implementation issues in different mobile OS's. We demonstrate how an attacker with low cost setup can spoof NITZ and NTP messages to cause Denial of Service attacks. Finally, we propose methods for securely synchronizing the clock on smartphones.
Future transportation systems highly rely on the integrity of spatial information provided by their means of transportation such as vehicles and planes. In critical applications (e.g. collision avoidance), tampering with this data can result in life-threatening situations. It is therefore essential for the safety of these systems to securely verify this information. While there is a considerable body of work on the secure verification of locations, movement of nodes has only received little attention in the literature. This paper proposes a new method to securely verify spatial movement of a mobile sender in all dimensions, i.e., position, speed, and direction. Our scheme uses Doppler shift measurements from different locations to verify a prover's motion. We provide formal proof for the security of the scheme and demonstrate its applicability to air traffic communications. Our results indicate that it is possible to reliably verify the motion of aircraft in currently operational systems with an equal error rate of zero.
Radio network information is leaked well beyond the perimeter in which the radio network is deployed. We investigate attacks where person location can be inferred using the radio characteristics of wireless links (e.g., the received signal strength). An attacker can deploy a network of receivers which measure the received signal strength of the radio signals transmitted by the legitimate wireless devices inside a perimeter, allowing the attacker to learn the locations of people moving in the vicinity of the devices inside the perimeter. In this paper, we develop the first solution to this location privacy problem where neither the attacker nodes nor the tracked moving object transmit any RF signals. We first model the radio network leakage attack using a Stackelberg game. Next, we define utility and cost functions related to the defender and attacker actions. Last, using our utility and cost functions, we find the optimal strategy for the defender by applying a greedy method. We evaluate our game theoretic framework using experiments and find that our approach significantly reduces the chance of an attacker determining the location of people inside a perimeter.
Today, mobile data owners lack consent and control over the release and utilization of their location data. Third party applications continuously process and access location data without data owners granular control and without knowledge of how location data is being used. The proliferation of GPS enabled IoT devices will lead to larger scale abuses of trust. In this paper we present the first design and implementation of a privacy module built into the GPSD daemon. The GPSD daemon is a low-level GPS interface that runs on GPS enabled devices. The integration of the privacy module ensures that data owners have granular control over the release of their GPS location. We describe the design of our privacy module integration into the GPSD daemon.
Black-holes, gray-holes and, wormholes, are devastating to the correct operation of any network. These attacks (among others) are based on the premise that packets will travel through compromised nodes, and methods exist to coax routing into these traps. Detection of these attacks are mainly centered around finding the subversion in action. In networks, bottleneck nodes -- those that sit on many potential routes between sender and receiver -- are an optimal location for compromise. Finding naturally occurring path bottlenecks, however, does not entitle network subversion, and as such are more difficult to detect. The dynamic nature of mobile ad-hoc networks (manets) causes ubiquitous routing algorithms to be even more susceptible to this class of attacks. Finding perceived bottlenecks in an olsr based manet, is able to capture between 50%-75% of data. In this paper we propose a method of subtly expanding perceived bottlenecks into complete bottlenecks, raising capture rate up to 99%; albeit, at high cost. We further tune the method to reduce cost, and measure the corresponding capture rate.
Crowdsourcing is an unique and practical approach to obtain personalized data and content. Its impact is especially significant in providing commentary, reviews and metadata, on a variety of location based services. In this study, we examine reliability of the Waze mapping service, and its vulnerability to a variety of location-based attacks. Our goals are to understand the severity of the problem, shed light on the general problem of location and device authentication, and explore the efficacy of potential defenses. Our preliminary results already show that a single attacker with limited resources can cause havoc on Waze, producing ``virtual'' congestion and accidents, automatically re-routing user traffic, and compromising user privacy by tracking users' precise movements via software while staying undetected. To defend against these attacks, we propose a proximity-based Sybil detection method to filter out malicious devices.
The prevalence of wireless networks and the convenience of mobile cameras enable many new video applications other than security and entertainment. From behavioral diagnosis to wellness monitoring, cameras are increasing used for observations in various educational and medical settings. Videos collected for such applications are considered protected health information under privacy laws in many countries. At the same time, there is an increasing need to share such video data across a wide spectrum of stakeholders including professionals, therapists and families facing similar challenges. Visual privacy protection techniques, such as blurring or object removal, can be used to mitigate privacy concern, but they also obliterate important visual cues of affect and social behaviors that are crucial for the target applications. In this paper, we propose a method of manipulating facial expression and body shape to conceal the identity of individuals while preserving the underlying affect states. The experiment results demonstrate the effectiveness of our method.
This paper addresses the minimum transmission broadcast (MTB) problem for the many-to-all scenario in wireless multihop networks and presents a network-coding broadcast protocol with priority-based deadlock prevention. Our main contributions are as follows: First, we relate the many-to-all-with-network-coding MTB problem to a maximum out-degree problem. The solution of the latter can serve as a lower bound for the number of transmissions. Second, we propose a distributed network-coding broadcast protocol, which constructs efficient broadcast trees and dictates nodes to transmit packets in a network coding manner. Besides, we present the priority-based deadlock prevention mechanism to avoid deadlocks. Simulation results confirm that compared with existing protocols in the literature and the performance bound we present, our proposed network-coding broadcast protocol performs very well in terms of the number of transmissions.
In wireless networks, spoofing attack is one of the most common and challenging attacks. Due to these attacks the overall network performance would be degraded. In this paper, a medoid based clustering approach has been proposed to detect a multiple spoofing attacks in wireless networks. In addition, a Enhanced Partitioning Around Medoid (EPAM) with average silhouette has been integrated with the clustering mechanism to detect a multiple spoofing attacks with a higher accuracy rate. Based on the proposed method, the received signal strength based clustering approach has been adopted for medoid clustering for detection of attacks. In order to prevent the multiple spoofing attacks, dynamic MAC address allocation scheme using MD5 hashing technique is implemented. The experimental results shows, the proposed method can detect spoofing attacks with high accuracy rate and prevent the attacks. Thus the overall network performance is improved with high accuracy rate.
We consider the problem of cross-layer resource allocation with information-theoretic secrecy for uplink transmissions in time-varying cellular wireless networks. Particularly, each node in an uplink cellular network injects two types of traffic, confidential and open at rates chosen in order to maximize a global utility function while keeping the data queues stable and meeting a constraint on the secrecy outage probability. The transmitting node only knows the distribution of channel gains. Our scheme is based on Hybrid Automatic Repeat Request (HARQ) transmission with incremental redundancy. We prove that our scheme achieves a utility, arbitrarily close to the maximum achievable. Numerical experiments are performed to verify the analytical results and to show the efficacy of the dynamic control algorithm.
For wireless sensor networks deployed to monitor and report real events, event source-location privacy (SLP) is a critical security property. Previous work has proposed schemes based on fake packet injection such as FitProbRate and TFS, to realize event source anonymity for sensor networks under a challenging attack model where a global attacker is able to monitor the traffic in the entire network. Although these schemes can well protect the SLP, there exists imbalance in traffic or delay. In this paper, we propose an Optimal-cluster-based Source Anonymity Protocol (OSAP), which can achieve a tradeoff between network traffic and real event report latency through adjusting the transmission rate and the radius of unequal clusters, to reduce the network traffic. The simulation results demonstrate that OSAP can significantly reduce the network traffic and the delay meets the system requirement.