Visible to the public Biblio

Found 124 results

Filters: Keyword is Fog Computing  [Clear All Filters]
2023-08-17
Misbahuddin, Mohammed, Harish, Rashmi, Ananya, K.  2022.  Identity of Things (IDoT): A Preliminary Report on Identity Management Solutions for IoT Devices. 2022 IEEE International Conference on Public Key Infrastructure and its Applications (PKIA). :1—9.
The Internet of Things poses some of the biggest security challenges in the present day. Companies, users and infrastructures are constantly under attack by malicious actors. Increasingly, attacks are being launched by hacking into one vulnerable device and hence disabling entire networks resulting in great loss. A strong identity management framework can help better protect these devices by issuing a unique identity and managing the same through its lifecycle. Identity of Things (IDoT) is a term that has been used to describe the importance of device identities in IoT networks. Since the traditional identity and access management (IAM) solutions are inadequate in managing identities for IoT, the Identity of Things (IDoT) is emerging as the solution for issuance of Identities to every type of device within the IoT IAM infrastructure. This paper presents the survey of recent research works proposed in the area of device identities and various commercial solutions offered by organizations specializing in IoT device security.
2023-07-21
Nazih, Ossama, Benamar, Nabil, Lamaazi, Hanane, Chaoui, Habiba.  2022.  Challenges and future directions for security and privacy in vehicular fog computing. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :693—699.
Cooperative Intelligent Transportation System (CITS) has been introduced recently to increase road safety, traffic efficiency, and to enable various infotainment and comfort applications and services. To this end, a bunch technologies have been deployed to maintain and promote ITS. In essence, ITS is composed of vehicles, roadside infrastructure, and the environment that includes pedestrians, and other entities. Recently, several solutions were suggested to handle with the challenges faced by the vehicular networks (VN) using future internet architectures. One of the promising solutions proposed recently is Vehicular Fog computing (VFC), an attractive solution that supports sensitive service requests considering factors such as latency, mobility, localization, and scalability. VFC also provides a virtual platform for real-time big data analytic using servers or vehicles as a fog infrastructure. This paper surveys the general fog computing (FC) concept, the VFC architectures, and the key characteristics of several intelligent computing applications. We mainly focus on trust and security challenges in VFC deployment and real-time BD analytic in vehicular environment. We identify the faced challenges and future research directions in VFC and we highlight the research gap that can be exploited by researchers and vehicular manufactures while designing a new secure VFC architecture.
Huang, Xiaoge, Yin, Hongbo, Wang, Yongsheng, Chen, Qianbin, Zhang, Jie.  2022.  Location-Based Reliable Sharding in Blockchain-Enabled Fog Computing Networks. 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP). :12—16.
With the explosive growth of the internet of things (IoT) devices, there are amount of data requirements and computing tasks. Fog computing network that could provide computing, caching and communication resources closer to IoT devices (ID) is considered as a potential solution to deal with the vast computing tasks. To improve the performance of the fog computing network while ensuring data security, blockchain technology is enabled and a location-based reliable sharding (LRS) algorithm is proposed, which jointly considers the optimal number of shards, the geographical location of fog nodes (FNs), and the number of nodes in each shard. Firstly, the reliable sharding result is based on the reputation values of FNs, which are related to the decision information and historical reputation value of FNs in the consensus process. Moreover, a reputation based PBFT consensus algorithm is adopted to accelerate the consensus process. Furthermore, the normalized entropy is used to estimate the proportion of malicious nodes and optimize the number of shards. Finally, simulation results show the effectiveness of the proposed scheme.
Hamzah, Anwer Sattar, Abdul-Rahaim, Laith Ali.  2022.  Smart Homes Automation System Using Cloud Computing Based Enhancement Security. 2022 5th International Conference on Engineering Technology and its Applications (IICETA). :164—169.
Smart home automation is one of the prominent topics of the current era, which has attracted the attention of researchers for several years due to smart home automation contributes to achieving many capabilities, which have had a real and vital impact on our daily lives, such as comfort, energy conservation, environment, and security. Home security is one of the most important of these capabilities. Many efforts have been made on research and articles that focus on this area due to the increased rate of crime and theft. The present paper aims to build a practically implemented smart home that enhances home control management and monitors all home entrances that are often vulnerable to intrusion by intruders and thieves. The proposed system depends on identifying the person using the face detection and recognition method and Radio Frequency Identification (RFID) as a mechanism to enhance the performance of home security systems. The cloud server analyzes the received member identification to retrieve the permission to enter the home. The system showed effectiveness and speed of response in transmitting live captures of any illegal intrusive activity at the door or windows of the house. With the growth and expansion of the concept of smart homes, the amount of information transmitted, information security weakness, and response time disturbances, to reduce latency, data storage, and maintain information security, by employing Fog computing architecture in smart homes as a broker between the IoT layer and the cloud servers and the user layer.
Singh, Kiran Deep, Singh, Prabhdeep, Tripathi, Vikas, Khullar, Vikas.  2022.  A Novel and Secure Framework to Detect Unauthorized Access to an Optical Fog-Cloud Computing Network. 2022 Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC). :618—622.
Securing optical edge devices across an optical network is a critical challenge for the technological capabilities of fog/cloud computing. Locating and blocking rogue devices from transmitting data frames in an optical network is a significant security problem due to their widespread distribution over the optical fog cloud. A malicious actor might simply compromise such a device and execute assaults that degrade the optical channel’s Quality. In this study, we advocate an innovative framework for the use of an optical network to facilitate cloud and fog computing in a safe environment. This framework is sustainable and able to detect hostile equipment in optical fog and cloud and redirect it to a honeypot, where the assault may be halted and analyzed. To do this, it employs a model based on a two-stage hidden Markov, a fog manager based on an intrusion detection system, and an optical virtual honeypot. An internal assault is mitigated by simulated testing of the suggested system. The findings validate the adaptable and affordable access for cloud computing and optical fog.
Elmoghrapi, Asma N., Bleblo, Ahmed, Younis, Younis A..  2022.  Fog Computing or Cloud Computing: a Study. 2022 International Conference on Engineering & MIS (ICEMIS). :1—6.
Cloud computing is a new term that refers to the service provisioned over the Internet. It is considered one of the foremost prevailing standards within the Data Innovation (IT) industry these days. It offers capable handling and capacity assets as on-demand administrations at diminished fetched, and progressed productivity. It empowers sharing computing physical assets among cloud computing tents and offers on-demand scaling with taken toll effectiveness. Moreover, cloud computing plays an important role in data centers because they house virtually limitless computational and storage capacities that businesses and end-users can access and use via the Internet. In the context of cloud computing, fog computing refers to bringing services to the network’s edge. Fog computing gives cloud-like usefulness, such as information capacity space, systems, and compute handling control, yet with a more noteworthy scope and nearness since fog nodes are found close to d-user edge gadgets, leveraging assets and diminishing inactivity. The concepts of cloud computing and fog computing will be explored in this paper, and their features will be contrasted to determine the differences between them. Over 25 factors have been used to compare them.
Chandra Bose, S.Subash, R, Vinay D, Raju, Yeligeti, Bhavana, N., Sengupta, Anirbit, Singh, Prabhishek.  2022.  A Deep Learning-Based Fog Computing and cloud computing for Orchestration. 2022 2nd International Conference on Innovative Sustainable Computational Technologies (CISCT). :1—5.
Fog computing is defined as a decentralized infrastructure that locations storage and processing aspects at the side of the cloud, the place records sources such as software customers and sensors exist. The Fog Computing is the time period coined via Cisco that refers to extending cloud computing to an area of the enterprise’s network. Thus, it is additionally recognized as Edge Computing or Fogging. It allows the operation of computing, storage, and networking offerings between give up units and computing facts centers. Fog computing is defined as a decentralized infrastructure that locations storage and processing aspects at the side of the cloud, the place records sources such as software customers and sensors exist. The fog computing Intelligence as Artificial Intelligence (AI) is furnished by way of Fog Nodes in cooperation with Clouds. In Fog Nodes several sorts of AI studying can be realized - such as e.g., Machine Learning (ML), Deep Learning (DL). Thanks to the Genius of Fog Nodes, for example, we communicate of Intelligent IoT.
Almutairi, Mishaal M., Apostolopoulou, Dimitra, Halikias, George, Abi Sen, Adnan Ahmed, Yamin, Mohammad.  2022.  Enhancing Privacy and Security in Crowds using Fog Computing. 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). :57—62.
Thousands of crowded events take place every year. Often, management does not properly implement and manage privacy and security of data of the participants and personnel of the events. Crowds are also prone to significant security issues and become vulnerable to terrorist attacks. The aim of this paper is to propose a privacy and security framework for large, crowded events like the Hajj, Kumbh, Arba'een, and many sporting events and musical concerts. The proposed framework uses the latest technologies including Internet of Things, and Fog computing, especially in the Location based Services environments. The proposed framework can also be adapted for many other scenarios and situations.
Muhammad Nabi, Masooma, Shah, Munam Ali.  2022.  A Fuzzy Approach to Trust Management in Fog Computing. 2022 24th International Multitopic Conference (INMIC). :1—6.

The Internet of Things (IoT) technology has revolutionized the world where anything is smartly connected and is accessible. The IoT makes use of cloud computing for processing and storing huge amounts of data. In some way, the concept of fog computing has emerged between cloud and IoT devices to address the issue of latency. When a fog node exchanges data for completing a particular task, there are many security and privacy risks. For example, offloading data to a rogue fog node might result in an illegal gathering or modification of users' private data. In this paper, we rely on trust to detect and detach bad fog nodes. We use a Mamdani fuzzy method and we consider a hospital scenario with many fog servers. The aim is to identify the malicious fog node. Metrics such as latency and distance are used in evaluating the trustworthiness of each fog server. The main contribution of this study is identifying how fuzzy logic configuration could alter the trust value of fog nodes. The experimental results show that our method detects the bad fog device and establishes its trustworthiness in the given scenario.

Mukherjee, Pratyusa, Kumar Barik, Rabindra.  2022.  Fog-QKD:Towards secure geospatial data sharing mechanism in geospatial fog computing system based on Quantum Key Distribution. 2022 OITS International Conference on Information Technology (OCIT). :485—490.

Geospatial fog computing system offers various benefits as a platform for geospatial computing services closer to the end users, including very low latency, good mobility, precise position awareness, and widespread distribution. In recent years, it has grown quickly. Fog nodes' security is susceptible to a number of assaults, including denial of service and resource abuse, because to their widespread distribution, complex network environments, and restricted resource availability. This paper proposes a Quantum Key Distribution (QKD)-based geospatial quantum fog computing environment that offers a symmetric secret key negotiation protocol that can preserve information-theoretic security. In QKD, after being negotiated between any two fog nodes, the secret keys can be given to several users in various locations to maintain forward secrecy and long-term protection. The new geospatial quantum fog computing environment proposed in this work is able to successfully withstand a variety of fog computing assaults and enhances information security.

2023-03-17
ELMansy, Hossam, Metwally, Khaled, Badran, Khaled.  2022.  MPTCP-based Security Schema in Fog Computing. 2022 13th International Conference on Electrical Engineering (ICEENG). :134–138.

Recently, Cloud Computing became one of today’s great innovations for provisioning Information Technology (IT) resources. Moreover, a new model has been introduced named Fog Computing, which addresses Cloud Computing paradigm issues regarding time delay and high cost. However, security challenges are still a big concern about the vulnerabilities to both Cloud and Fog Computing systems. Man- in- the- Middle (MITM) is considered one of the most destructive attacks in a Fog Computing context. Moreover, it’s very complex to detect MiTM attacks as it is performed passively at the Software-Defined Networking (SDN) level, also the Fog Computing paradigm is ideally suitable for MITM attacks. In this paper, a MITM mitigation scheme will be proposed consisting of an SDN network (Fog Leaders) which controls a layer of Fog Nodes. Furthermore, Multi-Path TCP (MPTCP) has been used between all edge devices and Fog Nodes to improve resource utilization and security. The proposed solution performance evaluation has been carried out in a simulation environment using Mininet, Ryu SDN controller and Multipath TCP (MPTCP) Linux kernel. The experimental results showed that the proposed solution improves security, network resiliency and resource utilization without any significant overheads compared to the traditional TCP implementation.

2023-02-03
Revathi, K., Tamilselvi, T., Tamilselvi, K., Shanthakumar, P., Samydurai, A..  2022.  Context Aware Fog-Assisted Vital Sign Monitoring System: Design and Implementation. 2022 International Conference on Edge Computing and Applications (ICECAA). :108–112.
The Internet of Things (IoT) aims to introduce pervasive computation into the human environment. The processing on a cloud platform is suggested due to the IoT devices' resource limitations. High latency while transmitting IoT data from its edge network to the cloud is the primary limitation. Modern IoT applications frequently use fog computing, an unique architecture, as a replacement for the cloud since it promises faster reaction times. In this work, a fog layer is introduced in smart vital sign monitor design in order to serve faster. Context aware computing makes use of environmental or situational data around the object to invoke proactive services upon its usable content. Here in this work the fog layer is intended to provide local data storage, data preprocessing, context awareness and timely analysis.
Forti, Stefano.  2022.  Keynote: The fog is rising, in sustainable smart cities. 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). :469–471.
With their variety of application verticals, smart cities represent a killer scenario for Cloud-IoT computing, e.g. fog computing. Such applications require a management capable of satisfying all their requirements through suitable service placements, and of balancing among QoS-assurance, operational costs, deployment security and, last but not least, energy consumption and carbon emissions. This keynote discusses these aspects over a motivating use case and points to some open challenges.
Halabi, Talal, Abusitta, Adel, Carvalho, Glaucio H.S., Fung, Benjamin C. M..  2022.  Incentivized Security-Aware Computation Offloading for Large-Scale Internet of Things Applications. 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech). :1–6.

With billions of devices already connected to the network's edge, the Internet of Things (IoT) is shaping the future of pervasive computing. Nonetheless, IoT applications still cannot escape the need for the computing resources available at the fog layer. This becomes challenging since the fog nodes are not necessarily secure nor reliable, which widens even further the IoT threat surface. Moreover, the security risk appetite of heterogeneous IoT applications in different domains or deploy-ment contexts should not be assessed similarly. To respond to this challenge, this paper proposes a new approach to optimize the allocation of secure and reliable fog computing resources among IoT applications with varying security risk level. First, the security and reliability levels of fog nodes are quantitatively evaluated, and a security risk assessment methodology is defined for IoT services. Then, an online, incentive-compatible mechanism is designed to allocate secure fog resources to high-risk IoT offloading requests. Compared to the offline Vickrey auction, the proposed mechanism is computationally efficient and yields an acceptable approximation of the social welfare of IoT devices, allowing to attenuate security risk within the edge network.

2023-01-06
Alotaibi, Jamal, Alazzawi, Lubna.  2022.  PPIoV: A Privacy Preserving-Based Framework for IoV- Fog Environment Using Federated Learning and Blockchain. 2022 IEEE World AI IoT Congress (AIIoT). :597—603.
The integration of the Internet-of-Vehicles (IoV) and fog computing benefits from cooperative computing and analysis of environmental data while avoiding network congestion and latency. However, when private data is shared across fog nodes or the cloud, there exist privacy issues that limit the effectiveness of IoV systems, putting drivers' safety at risk. To address this problem, we propose a framework called PPIoV, which is based on Federated Learning (FL) and Blockchain technologies to preserve the privacy of vehicles in IoV.Typical machine learning methods are not well suited for distributed and highly dynamic systems like IoV since they train on data with local features. Therefore, we use FL to train the global model while preserving privacy. Also, our approach is built on a scheme that evaluates the reliability of vehicles participating in the FL training process. Moreover, PPIoV is built on blockchain to establish trust across multiple communication nodes. For example, when the local learned model updates from the vehicles and fog nodes are communicated with the cloud to update the global learned model, all transactions take place on the blockchain. The outcome of our experimental study shows that the proposed method improves the global model's accuracy as a result of allowing reputed vehicles to update the global model.
2023-01-05
Yang, Haonan, Zhong, Yongchao, Yang, Bo, Yang, Yiyu, Xu, Zifeng, Wang, Longjuan, Zhang, Yuqing.  2022.  An Overview of Sybil Attack Detection Mechanisms in VFC. 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :117–122.
Vehicular Fog Computing (VFC) has been proposed to address the security and response time issues of Vehicular Ad Hoc Networks (VANETs) in latency-sensitive vehicular network environments, due to the frequent interactions that VANETs need to have with cloud servers. However, the anonymity protection mechanism in VFC may cause the attacker to launch Sybil attacks by fabricating or creating multiple pseudonyms to spread false information in the network, which poses a severe security threat to the vehicle driving. Therefore, in this paper, we summarize different types of Sybil attack detection mechanisms in VFC for the first time, and provide a comprehensive comparison of these schemes. In addition, we also summarize the possible impacts of different types of Sybil attacks on VFC. Finally, we summarize challenges and prospects of future research on Sybil attack detection mechanisms in VFC.
2022-11-18
Tanimoto, Shigeaki, Matsumoto, Mari, Endo, Teruo, Sato, Hiroyuki, Kanai, Atsushi.  2021.  Risk Management of Fog Computing for Improving IoT Security. 2021 10th International Congress on Advanced Applied Informatics (IIAI-AAI). :703—709.
With the spread of the Internet, various devices are now connected to it and the number of IoT devices is increasing. Data generated by IoT devices has traditionally been aggregated in the cloud and processed over time. However, there are two issues with using the cloud. The first is the response delay caused by the long distance between the IoT device and the cloud, and the second is the difficulty of implementing sufficient security measures on the IoT device side due to the limited resources of the IoT device at the end. To address these issues, fog computing, which is located in the middle between IoT devices and the cloud, has been attracting attention as a new network component. However, the risks associated with the introduction of fog computing have not yet been fully investigated. In this study, we conducted a risk assessment of fog computing, which is newly established to promote the use of IoT devices, and identified 24 risk factors. The main countermeasures include the gradual introduction of connected IoT connection protocols and security policy matching. We also demonstrated the effectiveness of the proposed risk measures by evaluating the risk values. The proposed risk countermeasures for fog computing should help us to utilize IoT devices in a safe and secure manner.
2022-10-20
Jain, Arpit, Jat, Dharm Singh.  2020.  An Edge Computing Paradigm for Time-Sensitive Applications. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :798—803.
Edge computing (EC) is a new developing computing technology where data are collected, and analysed nearer to the edge or sources of the data. Cloud to the edge, intelligent applications and analytics are part of the IoT applications and technology. Edge computing technology aims to bring cloud computing features near to edge devices. For time-sensitive applications in cloud computing, architecture massive volume of data is generated at the edge and stored and analysed in the cloud. Cloud infrastructure is a composition of data centres and large-scale networks, which provides reliable services to users. Traditional cloud computing is inefficient due to delay in response, network delay and congestion as simultaneous transactions to the cloud, which is a centralised system. This paper presents a literature review on cloud-based edge computing technologies for delay-sensitive applications and suggests a conceptual model of edge computing architecture. Further, the paper also presents the implementation of QoS support edge computing paradigm in Python for further research to improve the latency and throughput for time-sensitive applications.
2022-09-16
Gowda, Naveen Chandra, Manvi, Sunilkumar S..  2021.  An Efficient Authentication Scheme for Fog Computing Environment using Symmetric Cryptographic methods. 2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC). :01—06.

The mechanism of Fog computing is a distributed infrastructure to provide the computations as same as cloud computing. The fog computing environment provides the storage and processing of data in a distributed manner based on the locality. Fog servicing is better than cloud service for working with smart devices and users in a same locale. However the fog computing will inherit the features of the cloud, it also suffers from many security issues as cloud. One such security issue is authentication with efficient key management between the communicating entities. In this paper, we propose a secured two-way authentication scheme with efficient management of keys between the user mobile device and smart devices under the control of the fog server. We made use of operations such as one-way hash (SHA-512) functions, bitwise XOR, and fuzzy extractor function to make the authentication system to be better. We have verified the proposed scheme for its security effectiveness by using a well-used analysis tool ProVerif. We also proved that it can resist multiple attacks and the security overhead is reduced in terms of computation and communication cost as compared to the existing methods.

Ogundoyin, Sunday Oyinlola, Kamil, Ismaila Adeniyi.  2021.  A Lightweight Authentication and Key Agreement Protocol for Secure Fog-to-Fog Collaboration. 2021 IEEE International Mediterranean Conference on Communications and Networking (MeditCom). :348—353.
The fusion of peer-to-peer (P2P) fog network and the traditional three-tier fog computing architecture allows fog devices to conjointly pool their resources together for improved service provisioning and better bandwidth utilization. However, any unauthorized access to the fog network may have calamitous consequences. In this paper, a new lightweight two-party authenticated and key agreement (AKA) protocol is proposed for fog-to-fog collaboration. The security analysis of the protocol reveals that it is resilient to possible attacks. Moreover, the validation of the protocol conducted using the broadly-accepted Automated Verification of internet Security Protocols and Applications (AVISPA) shows that it is safe for practical deployment. The performance evaluation in terms of computation and communication overheads demonstrates its transcendence over the state-of-the-art protocols.
Shamshad, Salman, Obaidat, Mohammad S., Minahil, Shamshad, Usman, Noor, Sahar, Mahmood, Khalid.  2021.  On the Security of Authenticated Key Agreement Scheme for Fog-driven IoT Healthcare System. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :1760—1765.
The convergence of Internet of Things (IoT) and cloud computing is due to the practical necessity for providing broader services to extensive user in distinct environments. However, cloud computing has numerous constraints for applications that require high-mobility and high latency, notably in adversarial situations (e.g. battlefields). These limitations can be elevated to some extent, in a fog computing model because it covers the gap between remote data-center and edge device. Since, the fog nodes are usually installed in remote areas, therefore, they impose the design of fool proof safety solution for a fog-based setting. Thus, to ensure the security and privacy of fog-based environment, numerous schemes have been developed by researchers. In the recent past, Jia et al. (Wireless Networks, DOI: 10.1007/s11276-018-1759-3) designed a fog-based three-party scheme for healthcare system using bilinear. They claim that their scheme can withstand common security attacks. However, in this work we investigated their scheme and show that their scheme has different susceptibilities such as revealing of secret parameters, and fog node impersonation attack. Moreover, it lacks the anonymity of user anonymity and has inefficient login phase. Consequently, we have suggestion with some necessary guidelines for attack resilience that are unheeded by Jia et al.
Singh, Anil, Auluck, Nitin, Rana, Omer, Nepal, Surya.  2021.  Scheduling Real Tim Security Aware Tasks in Fog Networks. 2021 IEEE World Congress on Services (SERVICES). :6—6.
Fog computing extends the capability of cloud services to support latency sensitive applications. Adding fog computing nodes in proximity to a data generation/ actuation source can support data analysis tasks that have stringent deadline constraints. We introduce a real time, security-aware scheduling algorithm that can execute over a fog environment [1 , 2] . The applications we consider comprise of: (i) interactive applications which are less compute intensive, but require faster response time; (ii) computationally intensive batch applications which can tolerate some delay in execution. From a security perspective, applications are divided into three categories: public, private and semi-private which must be hosted over trusted, semi-trusted and untrusted resources. We propose the architecture and implementation of a distributed orchestrator for fog computing, able to combine task requirements (both performance and security) and resource properties.
Wu, Yiming, Lu, GeHao, Jin, Na, Fu, LiYu, Zhuan Zhao, Jing.  2021.  Trusted Fog Computing for Privacy Smart Contract Blockchain. 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP). :1042—1047.
The fog platform is very suitable for time and location sensitive applications. Compared with cloud computing, fog computing faces new security and privacy challenges. This paper integrates blockchain nodes with fog nodes, and uses multi-party secure computing (MPC) in smart contracts to realize privacy-protected fog computing. MPC technology realizes encrypted input and output, so that participants can only get the output value of their own function. It is impossible to know the input and output of other people, and privacy calculation is realized. At the same time, the blockchain can perform network-wide verification and consensus on the results calculated by the MPC under the chain. Ensure the reliability of the calculation results. Due to the integration of blockchain and fog nodes, access control and encryption are guaranteed, integrity and isolation are provided, and privacy-sensitive data is controlled. As more complex topological structures emerge, the entire chain of fog nodes must be trusted. This ensures the network security of distributed data storage and network topology, users and fog service providers. Finally, trusted fog computing with privacy protection is realized.
Sutton, Sara, Siasi, Nazli.  2021.  Decoy VNF for Enhanced Security in Fog Computing. 2021 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT). :75—81.
Fog computing extends cloud resources to the edge of the network, thus enabling network providers to support real-time applications at low latencies. These applications further demand high security against malicious attacks that target distributed fog servers. One effective defense mechanism here against cyber attacks is the use of honeypots. The latter acts as a potential target for attackers by diverting malicious traffic away from the servers that are dedicated to legitimate users. However, one main limitation of honeypots is the lack of real traffic and network activities. Therefore, it is important to implement a solution that simulates the behavior of the real system to lure attackers without the risk of being exposed. Hence this paper proposes a practical approach to generate network traffic by introducing decoy virtual network functions (VNF) embedded on fog servers, which make the network traffic on honeypots resemble a legitimate, vulnerable fog system to attract cyber attackers. The use of virtualization allows for robust scalability and modification of network functions based on incoming attacks, without the need for dedicated hardware. Moreover, deep learning is leveraged here to build fingerprints for each real VNF, which is subsequently used to support its decoy counterpart against active probes. The proposed framework is evaluated based on CPU utilization, memory usage, disk input/output access, and network latency.
Ageed, Zainab Salih, Zeebaree, Subhi R. M., Sadeeq, Mohammed A. M., Ibrahim, Rowaida Khalil, Shukur, Hanan M., Alkhayyat, Ahmed.  2021.  Comprehensive Study of Moving from Grid and Cloud Computing Through Fog and Edge Computing towards Dew Computing. 2021 4th International Iraqi Conference on Engineering Technology and Their Applications (IICETA). :68—74.
Dew Computing (DC) is a comparatively modern field with a wide range of applications. By examining how technological advances such as fog, edge and Dew computing, and distributed intelligence force us to reconsider traditional Cloud Computing (CC) to serve the Internet of Things. A new dew estimation theory is presented in this article. The revised definition is as follows: DC is a software and hardware cloud-based company. On-premises servers provide autonomy and collaborate with cloud networks. Dew Calculation aims to enhance the capabilities of on-premises and cloud-based applications. These categories can result in the development of new applications. In the world, there has been rapid growth in Information and Communication Technology (ICT), starting with Grid Computing (GC), CC, Fog Computing (FC), and the latest Edge Computing (EC) technology. DC technologies, infrastructure, and applications are described. We’ll go through the newest developments in fog networking, QoE, cloud at the edge, platforms, security, and privacy. The dew-cloud architecture is an option concerning the current client-server architecture, where two servers are located at opposite ends. In the absence of an Internet connection, a dew server helps users browse and track their details. Data are primarily stored as a local copy on the dew server that starts the Internet and is synchronized with the cloud master copy. The local dew pages, a local online version of the current website, can be browsed, read, written, or added to the users. Mapping between different Local Dew sites has been made possible using the dew domain name scheme and dew domain redirection.