Visible to the public Biblio

Filters: Keyword is cellular network  [Clear All Filters]
2023-03-03
Zhou, Ziyi, Han, Xing, Chen, Zeyuan, Nan, Yuhong, Li, Juanru, Gu, Dawu.  2022.  SIMulation: Demystifying (Insecure) Cellular Network based One-Tap Authentication Services. 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :534–546.
A recently emerged cellular network based One-Tap Authentication (OTAuth) scheme allows app users to quickly sign up or log in to their accounts conveniently: Mobile Network Operator (MNO) provided tokens instead of user passwords are used as identity credentials. After conducting a first in-depth security analysis, however, we have revealed several fundamental design flaws among popular OTAuth services, which allow an adversary to easily (1) perform unauthorized login and register new accounts as the victim, (2) illegally obtain identities of victims, and (3) interfere OTAuth services of legitimate apps. To further evaluate the impact of our identified issues, we propose a pipeline that integrates both static and dynamic analysis. We examined 1,025/894 Android/iOS apps, each app holding more than 100 million installations. We confirmed 396/398 Android/iOS apps are affected. Our research systematically reveals the threats against OTAuth services. Finally, we provide suggestions on how to mitigate these threats accordingly.
ISSN: 2158-3927
2018-02-28
Hong, H., Choi, H., Kim, D., Kim, H., Hong, B., Noh, J., Kim, Y..  2017.  When Cellular Networks Met IPv6: Security Problems of Middleboxes in IPv6 Cellular Networks. 2017 IEEE European Symposium on Security and Privacy (EuroS P). :595–609.

Recently, cellular operators have started migrating to IPv6 in response to the increasing demand for IP addresses. With the introduction of IPv6, cellular middleboxes, such as firewalls for preventing malicious traffic from the Internet and stateful NAT64 boxes for providing backward compatibility with legacy IPv4 services, have become crucial to maintain stability of cellular networks. This paper presents security problems of the currently deployed IPv6 middleboxes of five major operators. To this end, we first investigate several key features of the current IPv6 deployment that can harm the safety of a cellular network as well as its customers. These features combined with the currently deployed IPv6 middlebox allow an adversary to launch six different attacks. First, firewalls in IPv6 cellular networks fail to block incoming packets properly. Thus, an adversary could fingerprint cellular devices with scanning, and further, she could launch denial-of-service or over-billing attacks. Second, vulnerabilities in the stateful NAT64 box, a middlebox that maps an IPv6 address to an IPv4 address (and vice versa), allow an adversary to launch three different attacks: 1) NAT overflow attack that allows an adversary to overflow the NAT resources, 2) NAT wiping attack that removes active NAT mappings by exploiting the lack of TCP sequence number verification of firewalls, and 3) NAT bricking attack that targets services adopting IP-based blacklisting by preventing the shared external IPv4 address from accessing the service. We confirmed the feasibility of these attacks with an empirical analysis. We also propose effective countermeasures for each attack.

2017-05-19
Park, Shinjo, Shaik, Altaf, Borgaonkar, Ravishankar, Seifert, Jean-Pierre.  2016.  White Rabbit in Mobile: Effect of Unsecured Clock Source in Smartphones. Proceedings of the 6th Workshop on Security and Privacy in Smartphones and Mobile Devices. :13–21.

With its high penetration rate and relatively good clock accuracy, smartphones are replacing watches in several market segments. Modern smartphones have more than one clock source to complement each other: NITZ (Network Identity and Time Zone), NTP (Network Time Protocol), and GNSS (Global Navigation Satellite System) including GPS. NITZ information is delivered by the cellular core network, indicating the network name and clock information. NTP provides a facility to synchronize the clock with a time server. Among these clock sources, only NITZ and NTP are updated without user interaction, as location services require manual activation. In this paper, we analyze security aspects of these clock sources and their impact on security features of modern smartphones. In particular, we investigate NITZ and NTP procedures over cellular networks (2G, 3G and 4G) and Wi-Fi communication respectively. Furthermore, we analyze several European, Asian, and American cellular networks from NITZ perspective. We identify three classes of vulnerabilities: specification issues in a cellular protocol, configurational issues in cellular network deployments, and implementation issues in different mobile OS's. We demonstrate how an attacker with low cost setup can spoof NITZ and NTP messages to cause Denial of Service attacks. Finally, we propose methods for securely synchronizing the clock on smartphones.