Boato, G., Dang-Nguyen, D., Natale, F. G. B. De.
2020.
Morphological Filter Detector for Image Forensics Applications. IEEE Access. 8:13549—13560.
Mathematical morphology provides a large set of powerful non-linear image operators, widely used for feature extraction, noise removal or image enhancement. Although morphological filters might be used to remove artifacts produced by image manipulations, both on binary and gray level documents, little effort has been spent towards their forensic identification. In this paper we propose a non-trivial extension of a deterministic approach originally detecting erosion and dilation of binary images. The proposed approach operates on grayscale images and is robust to image compression and other typical attacks. When the image is attacked the method looses its deterministic nature and uses a properly trained SVM classifier, using the original detector as a feature extractor. Extensive tests demonstrate that the proposed method guarantees very high accuracy in filtering detection, providing 100% accuracy in discriminating the presence and the type of morphological filter in raw images of three different datasets. The achieved accuracy is also good after JPEG compression, equal or above 76.8% on all datasets for quality factors above 80. The proposed approach is also able to determine the adopted structuring element for moderate compression factors. Finally, it is robust against noise addition and it can distinguish morphological filter from other filters.
Zhang, J., Liao, Y., Zhu, X., Wang, H., Ding, J..
2020.
A Deep Learning Approach in the Discrete Cosine Transform Domain to Median Filtering Forensics. IEEE Signal Processing Letters. 27:276—280.
This letter presents a novel median filtering forensics approach, based on a convolutional neural network (CNN) with an adaptive filtering layer (AFL), which is built in the discrete cosine transform (DCT) domain. Using the proposed AFL, the CNN can determine the main frequency range closely related with the operational traces. Then, to automatically learn the multi-scale manipulation features, a multi-scale convolutional block is developed, exploring a new multi-scale feature fusion strategy based on the maxout function. The resultant features are further processed by a convolutional stream with pooling and batch normalization operations, and finally fed into the classification layer with the Softmax function. Experimental results show that our proposed approach is able to accurately detect the median filtering manipulation and outperforms the state-of-the-art schemes, especially in the scenarios of low image resolution and serious compression loss.
Mayer, O., Stamm, M. C..
2020.
Forensic Similarity for Digital Images. IEEE Transactions on Information Forensics and Security. 15:1331—1346.
In this paper, we introduce a new digital image forensics approach called forensic similarity, which determines whether two image patches contain the same forensic trace or different forensic traces. One benefit of this approach is that prior knowledge, e.g., training samples, of a forensic trace is not required to make a forensic similarity decision on it in the future. To do this, we propose a two-part deep-learning system composed of a convolutional neural network-based feature extractor and a three-layer neural network, called the similarity network. This system maps the pairs of image patches to a score indicating whether they contain the same or different forensic traces. We evaluated the system accuracy of determining whether two image patches were captured by the same or different camera model and manipulated by the same or a different editing operation and the same or a different manipulation parameter, given a particular editing operation. Experiments demonstrate applicability to a variety of forensic traces and importantly show efficacy on “unknown” forensic traces that were not used to train the system. Experiments also show that the proposed system significantly improves upon prior art, reducing error rates by more than half. Furthermore, we demonstrated the utility of the forensic similarity approach in two practical applications: forgery detection and localization, and database consistency verification.
Rhee, K. H..
2020.
Composition of Visual Feature Vector Pattern for Deep Learning in Image Forensics. IEEE Access. 8:188970—188980.
In image forensics, to determine whether the image is impurely transformed, it extracts and examines the features included in the suspicious image. In general, the features extracted for the detection of forgery images are based on numerical values, so it is somewhat unreasonable to use in the CNN structure for image classification. In this paper, the extraction method of a feature vector is using a least-squares solution. Treat a suspicious image like a matrix and its solution to be coefficients as the feature vector. Get two solutions from two images of the original and its median filter residual (MFR). Subsequently, the two features were formed into a visualized pattern and then fed into CNN deep learning to classify the various transformed images. A new structure of the CNN net layer was also designed by hybrid with the inception module and the residual block to classify visualized feature vector patterns. The performance of the proposed image forensics detection (IFD) scheme was measured with the seven transformed types of image: average filtered (window size: 3 × 3), gaussian filtered (window size: 3 × 3), JPEG compressed (quality factor: 90, 70), median filtered (window size: 3 × 3, 5 × 5), and unaltered. The visualized patterns are fed into the image input layer of the designed CNN hybrid model. Throughout the experiment, the accuracy of median filtering detection was 98% over. Also, the area under the curve (AUC) by sensitivity (TP: true positive rate) and 1-specificity (FP: false positive rate) results of the proposed IFD scheme approached to `1' on the designed CNN hybrid model. Experimental results show high efficiency and performance to classify the various transformed images. Therefore, the grade evaluation of the proposed scheme is “Excellent (A)”.
Guerrini, F., Dalai, M., Leonardi, R..
2020.
Minimal Information Exchange for Secure Image Hash-Based Geometric Transformations Estimation. IEEE Transactions on Information Forensics and Security. 15:3482—3496.
Signal processing applications dealing with secure transmission are enjoying increasing attention lately. This paper provides some theoretical insights as well as a practical solution for transmitting a hash of an image to a central server to be compared with a reference image. The proposed solution employs a rigid image registration technique viewed in a distributed source coding perspective. In essence, it embodies a phase encoding framework to let the decoder estimate the transformation parameters using a very modest amount of information about the original image. The problem is first cast in an ideal setting and then it is solved in a realistic scenario, giving more prominence to low computational complexity in both the transmitter and receiver, minimal hash size, and hash security. Satisfactory experimental results are reported on a standard images set.
Zheng, Y., Cao, Y., Chang, C..
2020.
A PUF-Based Data-Device Hash for Tampered Image Detection and Source Camera Identification. IEEE Transactions on Information Forensics and Security. 15:620—634.
With the increasing prevalent of digital devices and their abuse for digital content creation, forgeries of digital images and video footage are more rampant than ever. Digital forensics is challenged into seeking advanced technologies for forgery content detection and acquisition device identification. Unfortunately, existing solutions that address image tampering problems fail to identify the device that produces the images or footage while techniques that can identify the camera is incapable of locating the tampered content of its captured images. In this paper, a new perceptual data-device hash is proposed to locate maliciously tampered image regions and identify the source camera of the received image data as a non-repudiable attestation in digital forensics. The presented image may have been either tampered or gone through benign content preserving geometric transforms or image processing operations. The proposed image hash is generated by projecting the invariant image features into a physical unclonable function (PUF)-defined Bernoulli random space. The tamper-resistant random PUF response is unique for each camera and can only be generated upon triggered by a challenge, which is provided by the image acquisition timestamp. The proposed hash is evaluated on the modified CASIA database and CMOS image sensor-based PUF simulated using 180 nm TSMC technology. It achieves a high tamper detection rate of 95.42% with the regions of tampered content successfully located, a good authentication performance of above 98.5% against standard content-preserving manipulations, and 96.25% and 90.42%, respectively, for the more challenging geometric transformations of rotation (0 360°) and scaling (scale factor in each dimension: 0.5). It is demonstrated to be able to identify the source camera with 100% accuracy and is secure against attacks on PUF.
Al-Dhaqm, A., Razak, S. A., Ikuesan, R. A., Kebande, V. R., Siddique, K..
2020.
A Review of Mobile Forensic Investigation Process Models. IEEE Access. 8:173359—173375.
Mobile Forensics (MF) field uses prescribed scientific approaches with a focus on recovering Potential Digital Evidence (PDE) from mobile devices leveraging forensic techniques. Consequently, increased proliferation, mobile-based services, and the need for new requirements have led to the development of the MF field, which has in the recent past become an area of importance. In this article, the authors take a step to conduct a review on Mobile Forensics Investigation Process Models (MFIPMs) as a step towards uncovering the MF transitions as well as identifying open and future challenges. Based on the study conducted in this article, a review of the literature revealed that there are a few MFIPMs that are designed for solving certain mobile scenarios, with a variety of concepts, investigation processes, activities, and tasks. A total of 100 MFIPMs were reviewed, to present an inclusive and up-to-date background of MFIPMs. Also, this study proposes a Harmonized Mobile Forensic Investigation Process Model (HMFIPM) for the MF field to unify and structure whole redundant investigation processes of the MF field. The paper also goes the extra mile to discuss the state of the art of mobile forensic tools, open and future challenges from a generic standpoint. The results of this study find direct relevance to forensic practitioners and researchers who could leverage the comprehensiveness of the developed processes for investigation.
Verdoliva, L..
2020.
Media Forensics and DeepFakes: An Overview. IEEE Journal of Selected Topics in Signal Processing. 14:910—932.
With the rapid progress in recent years, techniques that generate and manipulate multimedia content can now provide a very advanced level of realism. The boundary between real and synthetic media has become very thin. On the one hand, this opens the door to a series of exciting applications in different fields such as creative arts, advertising, film production, and video games. On the other hand, it poses enormous security threats. Software packages freely available on the web allow any individual, without special skills, to create very realistic fake images and videos. These can be used to manipulate public opinion during elections, commit fraud, discredit or blackmail people. Therefore, there is an urgent need for automated tools capable of detecting false multimedia content and avoiding the spread of dangerous false information. This review paper aims to present an analysis of the methods for visual media integrity verification, that is, the detection of manipulated images and videos. Special emphasis will be placed on the emerging phenomenon of deepfakes, fake media created through deep learning tools, and on modern data-driven forensic methods to fight them. The analysis will help highlight the limits of current forensic tools, the most relevant issues, the upcoming challenges, and suggest future directions for research.
Guo, T., Zhou, R., Tian, C..
2020.
On the Information Leakage in Private Information Retrieval Systems. IEEE Transactions on Information Forensics and Security. 15:2999—3012.
We consider information leakage to the user in private information retrieval (PIR) systems. Information leakage can be measured in terms of individual message leakage or total leakage. Individual message leakage, or simply individual leakage, is defined as the amount of information that the user can obtain on any individual message that is not being requested, and the total leakage is defined as the amount of information that the user can obtain about all the other messages except the one being requested. In this work, we characterize the tradeoff between the minimum download cost and the individual leakage, and that for the total leakage, respectively. Coding schemes are proposed to achieve these optimal tradeoffs, which are also shown to be optimal in terms of the message size. We further characterize the optimal tradeoff between the minimum amount of common randomness and the total leakage. Moreover, we show that under individual leakage, common randomness is in fact unnecessary when there are more than two messages.
Al-Dhaqm, A., Razak, S. A., Dampier, D. A., Choo, K. R., Siddique, K., Ikuesan, R. A., Alqarni, A., Kebande, V. R..
2020.
Categorization and Organization of Database Forensic Investigation Processes. IEEE Access. 8:112846—112858.
Database forensic investigation (DBFI) is an important area of research within digital forensics. It's importance is growing as digital data becomes more extensive and commonplace. The challenges associated with DBFI are numerous, and one of the challenges is the lack of a harmonized DBFI process for investigators to follow. In this paper, therefore, we conduct a survey of existing literature with the hope of understanding the body of work already accomplished. Furthermore, we build on the existing literature to present a harmonized DBFI process using design science research methodology. This harmonized DBFI process has been developed based on three key categories (i.e. planning, preparation and pre-response, acquisition and preservation, and analysis and reconstruction). Furthermore, the DBFI has been designed to avoid confusion or ambiguity, as well as providing practitioners with a systematic method of performing DBFI with a higher degree of certainty.
Yang, Z., Sun, Q., Zhang, Y., Zhu, L., Ji, W..
2020.
Inference of Suspicious Co-Visitation and Co-Rating Behaviors and Abnormality Forensics for Recommender Systems. IEEE Transactions on Information Forensics and Security. 15:2766—2781.
The pervasiveness of personalized collaborative recommender systems has shown the powerful capability in a wide range of E-commerce services such as Amazon, TripAdvisor, Yelp, etc. However, fundamental vulnerabilities of collaborative recommender systems leave space for malicious users to affect the recommendation results as the attackers desire. A vast majority of existing detection methods assume certain properties of malicious attacks are given in advance. In reality, improving the detection performance is usually constrained due to the challenging issues: (a) various types of malicious attacks coexist, (b) limited representations of malicious attack behaviors, and (c) practical evidences for exploring and spotting anomalies on real-world data are scarce. In this paper, we investigate a unified detection framework in an eye for an eye manner without being bothered by the details of the attacks. Firstly, co-visitation and co-rating graphs are constructed using association rules. Then, attribute representations of nodes are empirically developed from the perspectives of linkage pattern, structure-based property and inherent association of nodes. Finally, both attribute information and connective coherence of graph are combined in order to infer suspicious nodes. Extensive experiments on both synthetic and real-world data demonstrate the effectiveness of the proposed detection approach compared with competing benchmarks. Additionally, abnormality forensics metrics including distribution of rating intention, time aggregation of suspicious ratings, degree distributions before as well as after removing suspicious nodes and time series analysis of historical ratings, are provided so as to discover interesting findings such as suspicious nodes (items or ratings) on real-world data.