Visible to the public Biblio

Filters: Keyword is eavesdropper  [Clear All Filters]
2023-02-03
Ayaz, Ferheen, Sheng, Zhengguo, Ho, Ivan Weng-Hei, Tiany, Daxin, Ding, Zhiguo.  2022.  Blockchain-enabled FD-NOMA based Vehicular Network with Physical Layer Security. 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). :1–6.
Vehicular networks are vulnerable to large scale attacks. Blockchain, implemented upon application layer, is recommended as one of the effective security and privacy solutions for vehicular networks. However, due to an increasing complexity of connected nodes, heterogeneous environment and rising threats, a robust security solution across multiple layers is required. Motivated by the Physical Layer Security (PLS) which utilizes physical layer characteristics such as channel fading to ensure reliable and confidential transmission, in this paper we analyze the impact of PLS on a blockchain-enabled vehicular network with two types of physical layer attacks, i.e., jamming and eavesdropping. Throughout the analysis, a Full Duplex Non-Orthogonal Multiple Access (FD-NOMA) based vehicle-to-everything (V2X) is considered to reduce interference caused by jamming and meet 5G communication requirements. Simulation results show enhanced goodput of a blockckchain enabled vehicular network integrated with PLS as compared to the same solution without PLS.
ISSN: 2577-2465
2021-11-08
Golstein, Sidney, Nguyen, Trung-Hien, Horlin, François, Doncker, Philippe De, Sarrazin, Julien.  2020.  Physical Layer Security in Frequency-Domain Time-Reversal SISO OFDM Communication. 2020 International Conference on Computing, Networking and Communications (ICNC). :222–227.
A frequency domain (FD) time-reversal (TR) pre-coder is proposed to perform physical layer security (PLS) in single-input single-output (SISO) system using orthogonal frequency-division multiplexing (OFDM). To maximize the secrecy of the communication, the design of an artificial noise (AN) signal well-suited to the proposed FD TR-based OFDM SISO system is derived. This new scheme guarantees the secrecy of a communication toward a legitimate user when the channel state information (CSI) of a potential eavesdropper is not known. In particular, we derive an AN signal that does not corrupt the data transmission to the legitimate receiver but degrades the decoding performance of the eavesdropper. A closed-form approximation of the AN energy to inject is defined in order to maximize the secrecy rate (SR) of the communication. Simulation results are presented to demonstrate the security performance of the proposed secure FD TR SISO OFDM system.
2021-04-08
Sarkar, M. Z. I., Ratnarajah, T..  2010.  Information-theoretic security in wireless multicasting. International Conference on Electrical Computer Engineering (ICECE 2010). :53–56.
In this paper, a wireless multicast scenario is considered in which the transmitter sends a common message to a group of client receivers through quasi-static Rayleigh fading channel in the presence of an eavesdropper. The communication between transmitter and each client receiver is said to be secured if the eavesdropper is unable to decode any information. On the basis of an information-theoretic formulation of the confidential communications between transmitter and a group of client receivers, we define the expected secrecy sum-mutual information in terms of secure outage probability and provide a complete characterization of maximum transmission rate at which the eavesdropper is unable to decode any information. Moreover, we find the probability of non-zero secrecy mutual information and present an analytical expression for ergodic secrecy multicast mutual information of the proposed model.
2021-03-15
Besser, K., Lonnstrom, A., Jorswieck, E. A..  2020.  Neural Network Wiretap Code Design for Multi-Mode Fiber Optical Channels. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :8738–8742.
The design of reliable and secure codes with finite block length is an important requirement for industrial machine type communications. In this work, we develop an autoencoder for the multi-mode fiber wiretap channel taking into account the error performance at the legitimate receiver and the information leakage at potential eavesdroppers. The estimate of the mutual information leakage includes AWGN and fading channels. The code design is tailored to the specific channel setup where the eavesdropper experiences a mode dependent loss. Numerical simulations illustrate the performance and show a Pareto improvement of the proposed scheme compared to the state-of-the-art polar wiretap codes.
2020-12-15
Frank, A..  2020.  Delay-Optimal Coding for Secure Transmission over Parallel Burst Erasure Channels with an Eavesdropper. 2020 IEEE International Symposium on Information Theory (ISIT). :960—965.

For streaming applications, we consider parallel burst erasure channels in the presence of an eavesdropper. The legitimate receiver must perfectly recover each source symbol subject to a decoding delay constraint without the eavesdropper gaining any information from his observation. For a certain class of code parameters, we propose delay-optimal M-link codes that recover multiple bursts of erasures of a limited length, and where the codes provide perfect security even if the eavesdropper can observe a link of his choice. Our codes achieve the maximum secrecy rate for the channel model.

2020-09-04
Hayashi, Masayoshi, Higaki, Hiroaki.  2018.  Security Improvement of Common-Key Cryptographic Communication by Mixture of Fake Plain- Texts. 2018 Second World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :151—157.
One of the fundamental methods for eavesdroppers to achieve a plaintext from a cryptogram is the brute force attack where possible candidates of decryption keys are exhaustively applied to the decryption algorithm. Here the only reason why the eavesdroppers believe to find the common-key and to achieve the plaintext is that the output of the decryption algorithm is contextually acceptable. According to this fact, this paper proposes a novel common-key cryptosystem where fake plaintexts which are also contextually acceptable are mixed into a cryptogram with the legal plaintext. If an eavesdropper applies a fake common-key to the decryption algorithm, it outputs the fake plaintexts which the eavesdroppers might believe legal. This paper also proposes concrete encryption/decryption algorithm which can be combined with any conventional common-key cryptosystem. Results of simulation experiments show the proposed method reduces probability for eavesdroppers to get legal plaintexts.
2020-07-13
Ge, Hong, Dai, Jianxin, Huang, Bo, Wang, Jin-Yuan.  2019.  Secrecy Rate Analysis for Visible Light Communications Using Spatial Modulation. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1241–1248.
This paper mainly investigates the physical layer security for visible light communication (VLC) based on spatial modulation (SM). The indoor VLC system includes multiple transmitters, a legitimate receiver and an eavesdropper. In the system, we consider two constraints of the input signal: non-negative and dimmable average optical intensity constraints. According to the principle of information theory and the spatial modulation scheme of uniform selection (US), the upper and the lower bounds on the secrecy rate for SM based VLC are derived, respectively. Numerical results show that the performance gap between the upper and lower bounds of the secrecy rate is small and relatively close, which indicates that the derived secrecy rate bounds can be used to evaluate the system performance. Moreover, when the number of transmitters is set to be one, the spatial modulation disappears, and the secrecy rate bounds in this paper are consistent with the existing results. To further improve the secrecy performance, a channel adaptive selection (CAS) scheme is proposed for selecting the active transmitter. Numerical result indicates that the CAS scheme has better performance than the US scheme.
2020-06-19
Shapiro, Jeffrey H., Boroson, Don M., Dixon, P. Ben, Grein, Matthew E., Hamilton, Scott A..  2019.  Quantum Low Probability of Intercept. 2019 Conference on Lasers and Electro-Optics (CLEO). :1—2.

Quantum low probability of intercept transmits ciphertext in a way that prevents an eavesdropper possessing the decryption key from recovering the plaintext. It is capable of Gbps communication rates on optical fiber over metropolitan-area distances.

2020-06-02
Kundu, M. K., Shabab, S., Badrudduza, A. S. M..  2019.  Information Theoretic Security over α-µ/α-µ Composite Multipath Fading Channel. 2019 IEEE International Conference on Telecommunications and Photonics (ICTP). :1—4.

Multipath fading as well as shadowing is liable for the leakage of confidential information from the wireless channels. In this paper a solution to this information leakage is proposed, where a source transmits signal through a α-μ/α-μ composite fading channel considering an eavesdropper is present in the system. Secrecy enhancement is investigated with the help of two fading parameters α and μ. To mitigate the impacts of shadowing a α-μ distribution is considered whose mean is another α-μ distribution which helps to moderate the effects multipath fading. The mathematical expressions of some secrecy matrices such as the probability of non-zero secrecy capacity and the secure outage probability are obtained in closed-form to analyze security of the wireless channel in light of the channel parameters. Finally, Monte-Carlo simulations are provided to justify the correctness of the derived expressions.

2020-04-06
Xuebing, Wang, Na, Qin, Yantao, Liu.  2019.  A Secure Network Coding System Against Wiretap Attacks. 2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC). :62—67.

Cyber security is a vital performance metric for networks. Wiretap attacks belong to passive attacks. It commonly exists in wired or wireless networks, where an eavesdropper steals useful information by wiretapping messages being shipped on network links. It seriously damages the confidentiality of communications. This paper proposed a secure network coding system architecture against wiretap attacks. It combines and collaborates network coding with cryptography technology. Some illustrating examples are given to show how to build such a system and prove its defense is much stronger than a system with a single defender, either network coding or cryptography. Moreover, the system is characterized by flexibility, simplicity, and easy to set up. Finally, it could be used for both deterministic and random network coding system.

Demir, Mehmet özgÜn, Kurty, GÜne Karabulut, Dartmannz, Guido, Ascheidx, Gerd, Pusane, Ali Emre.  2018.  Security Analysis of Forward Error Correction Codes in Relay Aided Networks. 2018 Global Information Infrastructure and Networking Symposium (GIIS). :1–5.

Network security and data confidentiality of transmitted information are among the non-functional requirements of industrial wireless sensor networks (IWSNs) in addition to latency, reliability and energy efficiency requirements. Physical layer security techniques are promising solutions to assist cryptographic methods in the presence of an eavesdropper in IWSN setups. In this paper, we propose a physical layer security scheme, which is based on both insertion of an random error vector to forward error correction (FEC) codewords and transmission over decentralized relay nodes. Reed-Solomon and Golay codes are selected as FEC coding schemes and the security performance of the proposed model is evaluated with the aid of decoding error probability of an eavesdropper. The results show that security level is highly based on the location of the eavesdropper and secure communication can be achieved when some of channels between eavesdropper and relay nodes are significantly noisier.

2019-11-27
Cao, Huan, Johnston, Martin, le Goff, Stéphane.  2019.  Frozen Bit Selection Scheme for Polar Coding Combined with Physical Layer Security. 2019 UK/ China Emerging Technologies (UCET). :1–4.

In this paper, we propose a frozen bit selection scheme for polar coding scheme combined with physical layer security that enhances the security of two legitimate users on a wiretap channel. By flipping certain frozen bits, the bit-error rate (BER) of an eavesdropper is maximized while the BER of the legitimate receiver is unaffected. An ARQ protocol is proposed that only feeds back a small proportion of the frozen bits to the transmitter, which increases the secrecy rate. The scheme is evaluated on a wiretap channel affected by impulsive noise and we consider cases where the eavesdropper's channel is actually more impulsive than the main channel. Simulation results show that the proposed scheme ensures the eavesdropper's BER is high even when only one frozen bit is flipped and this is achieved even when their channel is more impulsive than the main channel.

2019-09-05
Ta, H. Q., Kim, S. W..  2019.  Covert Communication Under Channel Uncertainty and Noise Uncertainty. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1-6.

Covert or low probability of detection communication is crucial to protect user privacy and provide a strong security. We analyze the joint impact of imperfect knowledge of the channel gain (channel uncertainty) and noise power (noise uncertainty) on the average probability of detection error at the eavesdropper and the covert throughput in Rayleigh fading channel. We characterize the covert throughput gain provided by the channel uncertainty as well as the covert throughput loss caused by the channel fading as a function of the noise uncertainty. Our result shows that the channel fading is essential to hiding the signal transmission, particularly when the noise uncertainty is below a threshold and/or the receive SNR is above a threshold. The impact of the channel uncertainty on the average probability of detection error and covert throughput is more significant when the noise uncertainty is larger.

2019-08-26
Chaman, Anadi, Wang, Jiaming, Sun, Jiachen, Hassanieh, Haitham, Roy Choudhury, Romit.  2018.  Ghostbuster: Detecting the Presence of Hidden Eavesdroppers. Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. :337–351.
This paper explores the possibility of detecting the hidden presence of wireless eavesdroppers. Such eavesdroppers employ passive receivers that only listen and never transmit any signals making them very hard to detect. In this paper, we show that even passive receivers leak RF signals on the wireless medium. This RF leakage, however, is extremely weak and buried under noise and other transmitted signals that can be 3-5 orders of magnitude larger. Hence, it is missed by today's radios. We design and build Ghostbuster, the first device that can reliably extract this leakage, even when it is buried under ongoing transmissions, in order to detect the hidden presence of eavesdroppers. Ghostbuster does not require any modifications to current transmitters and receivers and can accurately detect the eavesdropper in the presence of ongoing transmissions. Empirical results show that Ghostbuster can detect eavesdroppers with more than 95% accuracy up to 5 meters away.
2019-03-25
Yıldırım, A. Y., Kurt, G. K..  2018.  A filter selection based physical layer security system. 2018 26th Signal Processing and Communications Applications Conference (SIU). :1–4.
In this paper a new physical layer security method is proposed against eavesdropping attacks. Our purpose is to demonstrate that performance of the legitimate receiver can be increased and performance of the eavesdropper can be decreased by matching between the roll of factors of root raised cosine filters in the transmitter and receiver. Through the matching between the roll of factors (a), a performance difference is generated between the legitimate receiver and the eavesdropper. By using three software defined radio nodes error vector magnitude of the legitimate receiver and the eavesdropper is measured according to roll of factors. Performance differences the receiver are demonstrated when the roll off factor is matched and mismatched.
2018-11-19
Wang, Y., Zhang, L..  2017.  High Security Orthogonal Factorized Channel Scrambling Scheme with Location Information Embedded for MIMO-Based VLC System. 2017 IEEE 85th Vehicular Technology Conference (VTC Spring). :1–5.
The broadcast nature of visible light beam has aroused great concerns about the privacy and confidentiality of visible light communication (VLC) systems.In this paper, in order to enhance the physical layer security, we propose a channel scrambling scheme, which realizes orthogonal factorized channel scrambling with location information embedded (OFCS-LIE) for the VLC systems. We firstly embed the location information of the legitimate user, including the transmission angle and the distance, into a location information embedded (LIE) matrix, then the LIE matrix is factorized orthogonally in order that the LIE matrix is approximately uncorrelated to the multiple-input, multiple-output (MIMO) channels by the iterative orthogonal factorization method, where the iteration number is determined based on the orthogonal error. The resultant OFCS-LIE matrix is approximately orthogonal and used to enhance both the reliability and the security of information transmission. Furthermore, we derive the information leakage at the eavesdropper and the secrecy capacity to analyze the system security. Simulations are performed, and the results demonstrate that with the aid of the OFCS-LIE scheme, MIMO-based VLC system has achieved higher security when compared with the counterpart scrambling scheme and the system without scrambling.
2018-10-26
Taieb, M. H., Chouinard, J..  2017.  Physical layer security using BCH and LDPC codes with adaptive granular HARQ. 2017 IEEE Conference on Communications and Network Security (CNS). :564–569.

Transmission techniques based on channel coding with feedback are proposed in this paper to enhance the security of wireless communications systems at the physical layer. Reliable and secure transmission over an additive noise Gaussian wiretap channel is investigated using Bose-Chaudhuri-Hocquenghem (BCH) and Low-Density Parity-Check (LDPC) channel codes. A hybrid automatic repeat-request (HARQ) protocol is used to allow for the retransmission of coded packets requested by the intended receiver (Bob). It is assumed that an eavesdropper (Eve) has access to all forward and feedback transmitted packets. To limit the information leakage to Eve, retransmitted packets are subdivided into smaller granular subpackets. Retransmissions are stopped as soon as the decoding process at the legitimate (Bob) receiver converges. For the hard decision decoded BCH codes, a framework to compute the frame error probability with granular HARQ is proposed. For LDPC codes, the HARQ retransmission requests are based on received symbols likelihood computations: the legitimate recipient request for the retransmission of the set of bits that are more likely to help for successful LDPC decoding. The performances of the proposed techniques are assessed for nul and negative security gap (SG) values, that is when the eavesdropper's channel benefits from equal or better channel conditions than the legitimate channel.

2018-06-07
Zenger, C. T., Pietersz, M., Rex, A., Brauer, J., Dressler, F. P., Baiker, C., Theis, D., Paar, C..  2017.  Implementing a real-time capable WPLS testbed for independent performance and security analyses. 2017 51st Asilomar Conference on Signals, Systems, and Computers. :9–13.

As demonstrated recently, Wireless Physical Layer Security (WPLS) has the potential to offer substantial advantages for key management for small resource-constrained and, therefore, low-cost IoT-devices, e.g., the widely applied 8-bit MCU 8051. In this paper, we present a WPLS testbed implementation for independent performance and security evaluations. The testbed is based on off-the-shelf hardware and utilizes the IEEE 802.15.4 communication standard for key extraction and secret key rate estimation in real-time. The testbed can include generically multiple transceivers to simulate legitimate parties or eavesdropper. We believe with the testbed we provide a first step to make experimental-based WPLS research results comparable. As an example, we present evaluation results of several test cases we performed, while for further information we refer to https://pls.rub.de.

2018-03-19
Dai, W., Win, M. Z..  2017.  On Protecting Location Secrecy. 2017 International Symposium on Wireless Communication Systems (ISWCS). :31–36.

High-accuracy localization is a prerequisite for many wireless applications. To obtain accurate location information, it is often required to share users' positional knowledge and this brings the risk of leaking location information to adversaries during the localization process. This paper develops a theory and algorithms for protecting location secrecy. In particular, we first introduce a location secrecy metric (LSM) for a general measurement model of an eavesdropper. Compared to previous work, the measurement model accounts for parameters such as channel conditions and time offsets in addition to the positions of users. We determine the expression of the LSM for typical scenarios and show how the LSM depends on the capability of an eavesdropper and the quality of the eavesdropper's measurement. Based on the insights gained from the analysis, we consider a case study in wireless localization network and develop an algorithm that diminish the eavesdropper's capabilities by exploiting the reciprocity of channels. Numerical results show that the proposed algorithm can effectively increase the LSM and protect location secrecy.

2018-03-05
Cohen, A., Cohen, A., Médard, M., Gurewitz, O..  2017.  Individually-Secure Multi-Source Multicast. 2017 IEEE International Symposium on Information Theory (ISIT). :3105–3109.

The principal mission of Multi-Source Multicast (MSM) is to disseminate all messages from all sources in a network to all destinations. MSM is utilized in numerous applications. In many of them, securing the messages disseminated is critical. A common secure model is to consider a network where there is an eavesdropper which is able to observe a subset of the network links, and seek a code which keeps the eavesdropper ignorant regarding all the messages. While this is solved when all messages are located at a single source, Secure MSM (SMSM) is an open problem, and the rates required are hard to characterize in general. In this paper, we consider Individual Security, which promises that the eavesdropper has zero mutual information with each message individually. We completely characterize the rate region for SMSM under individual security, and show that such a security level is achievable at the full capacity of the network, that is, the cut-set bound is the matching converse, similar to non-secure MSM. Moreover, we show that the field size is similar to non-secure MSM and does not have to be larger due to the security constraint.

2017-12-20
Cao, C., Zhang, H., Lu, T., Gulliver, T. A..  2017.  An improved cooperative jamming strategy for PHY security in a multi-hop communications system. 2017 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM). :1–4.
In this paper, an improved cooperative jamming (CJ) strategy is developed for physical layer (PHY) security in a multi-hop wireless communication system which employs beamforming in the last hop. Users are assigned to independent groups based on the merger-and-split rule in a coalition game. The secrecy capacity for a valid coalition is a non-convex optimization problem which cannot easily be solved. Therefore, restrictions are added to transform this into a convex problem, and this is solved to obtain a suboptimal closed-form solution for the secrecy capacity. Simulation results are presented which show that the proposed strategy outperforms other methods such as non-cooperation, relay cooperation, and previous CJ approaches in terms of the secrecy capacity. Further, it is shown that the proposed multi-hop solution is suitable for long distance communication systems.
2015-05-05
Hong Wen, Jie Tang, Jinsong Wu, Huanhuan Song, Tingyong Wu, Bin Wu, Pin-Han Ho, Shi-Chao Lv, Li-Min Sun.  2015.  A Cross-Layer Secure Communication Model Based on Discrete Fractional Fourier Fransform (DFRFT). Emerging Topics in Computing, IEEE Transactions on. 3:119-126.

Discrete fractional Fourier transform (DFRFT) is a generalization of discrete Fourier transform. There are a number of DFRFT proposals, which are useful for various signal processing applications. This paper investigates practical solutions toward the construction of unconditionally secure communication systems based on DFRFT via cross-layer approach. By introducing a distort signal parameter, the sender randomly flip-flops between the distort signal parameter and the general signal parameter to confuse the attacker. The advantages of the legitimate partners are guaranteed. We extend the advantages between legitimate partners via developing novel security codes on top of the proposed cross-layer DFRFT security communication model, aiming to achieve an error-free legitimate channel while preventing the eavesdropper from any useful information. Thus, a cross-layer strong mobile communication secure model is built.
 

2015-05-01
Sasidharan, B., Kumar, P.V., Shah, N.B., Rashmi, K.V., Ramachandran, K..  2014.  Optimality of the product-matrix construction for secure MSR regenerating codes. Communications, Control and Signal Processing (ISCCSP), 2014 6th International Symposium on. :10-14.

In this paper, we consider the security of exact-repair regenerating codes operating at the minimum-storage-regenerating (MSR) point. The security requirement (introduced in Shah et. al.) is that no information about the stored data file must be leaked in the presence of an eavesdropper who has access to the contents of ℓ1 nodes as well as all the repair traffic entering a second disjoint set of ℓ2 nodes. We derive an upper bound on the size of a data file that can be securely stored that holds whenever ℓ2 ≤ d - k + 1. This upper bound proves the optimality of the product-matrix-based construction of secure MSR regenerating codes by Shah et. al.

2015-04-30
Sasidharan, B., Kumar, P.V., Shah, N.B., Rashmi, K.V., Ramachandran, K..  2014.  Optimality of the product-matrix construction for secure MSR regenerating codes. Communications, Control and Signal Processing (ISCCSP), 2014 6th International Symposium on. :10-14.

In this paper, we consider the security of exact-repair regenerating codes operating at the minimum-storage-regenerating (MSR) point. The security requirement (introduced in Shah et. al.) is that no information about the stored data file must be leaked in the presence of an eavesdropper who has access to the contents of ℓ1 nodes as well as all the repair traffic entering a second disjoint set of ℓ2 nodes. We derive an upper bound on the size of a data file that can be securely stored that holds whenever ℓ2 ≤ d - k + 1. This upper bound proves the optimality of the product-matrix-based construction of secure MSR regenerating codes by Shah et. al.