Biblio
Digital forensics is process of identifying, preserving, analyzing and preserving digital evidence. Due to increasing cybercrimes now a days, it is important for all organizations to have a well-managed digital forensics cell. So to overcome this, we propose a framework called digital forensics capability analyser. [1]The main advantage of developing digital analyzer is cost minimization. This tool will provide fundamental information for setting up a digital forensic cell and will also offer services like online sessions. [2] [3]It will help organizations by providing them with a perfect solution according to their requirements to start a digital forensic cell in their respective lnstitution.[4] [5].
The fundamental aim of digital forensics is to discover, investigate and protect an evidence, increasing cybercrime enforces digital forensics team to have more accurate evidence handling. This makes digital evidence as an important factor to link individual with criminal activity. In this procedure of forensics investigation, maintaining integrity of the evidence plays an important role. A chain of custody refers to a process of recording and preserving details of digital evidence from collection to presenting in court of law. It becomes a necessary objective to ensure that the evidence provided to the court remains original and authentic without tampering. Aim is to transfer these digital evidences securely using encryption techniques.
Techniques applied in response to detrimental digital incidents vary in many respects according to their attributes. Models of techniques exist in current research but are typically restricted to some subset with regards to the discipline of the incident. An enormous collection of techniques is actually available for use. There is no single model representing all these techniques. There is no current categorisation of digital forensics reactive techniques that classify techniques according to the attribute of function and nor is there an attempt to classify techniques in a means that goes beyond a subset. In this paper, an ontology that depicts digital forensic reactive techniques classified by function is presented. The ontology itself contains additional information for each technique useful for merging into a cognate system where the relationship between techniques and other facets of the digital investigative process can be defined. A number of existing techniques were collected and described according to their function - a verb. The function then guided the placement and classification of the techniques in the ontology according to the ontology development process. The ontology contributes to a knowledge base for digital forensics - essentially useful as a resource for the various people operating in the field of digital forensics. The benefit of this that the information can be queried, assumptions can be made explicit, and there is a one-stop-shop for digital forensics reactive techniques with their place in the investigation detailed.
Despite bringing many benefits of global network configuration and control, Software Defined Networking (SDN) also presents potential challenges for both digital forensics and cybersecurity. In fact, there are various attacks targeting a range of vulnerabilities on vital elements of this paradigm such as controller, Northbound and Southbound interfaces. In addition to solutions of security enhancement, it is important to build mechanisms for digital forensics in SDN which provide the ability to investigate and evaluate the security of the whole network system. It should provide features of identifying, collecting and analyzing log files and detailed information about network devices and their traffic. However, upon penetrating a machine or device, hackers can edit, even delete log files to remove the evidences about their presence and actions in the system. In this case, securing log files with fine-grained access control in proper storage without any modification plays a crucial role in digital forensics and cybersecurity. This work proposes a blockchain-based approach to improve the security of log management in SDN for network forensics, called SDNLog-Foren. This model is also evaluated with different experiments to prove that it can help organizations keep sensitive log data of their network system in a secure way regardless of being compromised at some different components of SDN.
In this paper, we present an extensive evaluation of face recognition and verification approaches performed by the European COST Action MULTI-modal Imaging of FOREnsic SciEnce Evidence (MULTI-FORESEE). The aim of the study is to evaluate various face recognition and verification methods, ranging from methods based on facial landmarks to state-of-the-art off-the-shelf pre-trained Convolutional Neural Networks (CNN), as well as CNN models directly trained for the task at hand. To fulfill this objective, we carefully designed and implemented a realistic data acquisition process, that corresponds to a typical face verification setup, and collected a challenging dataset to evaluate the real world performance of the aforementioned methods. Apart from verifying the effectiveness of deep learning approaches in a specific scenario, several important limitations are identified and discussed through the paper, providing valuable insight for future research directions in the field.
The world is continuously developing, and people's needs are increasing as well; so too are the number of thieves increasing, especially electronic thieves. For that reason, companies and individuals are always searching for experts who will protect them from thieves, and these experts are called digital investigators. Digital forensics has a number of branches and different parts, and image forensics is one of them. The budget for the images branch goes up every day in response to the need. In this paper we offer some information about images and image forensics, image components and how they are stored in digital devices and how they can be deleted and recovered. We offer general information about digital forensics, focusing on image forensics.
As Blockchain technology become more understood in recent years and its capability to solve enterprise business use cases become evident, technologist have been exploring Blockchain technology to solve use cases that have been daunting industries for years. Unlike existing technologies, one of the key features of blockchain technology is its unparalleled capability to provide, traceability, accountability and immutable records that can be accessed at any point in time. One application area of interest for blockchain is securing heterogenous networks. This paper explores the security challenges in a heterogonous network of IoT devices and whether blockchain can be a viable solution. Using an experimental approach, we explore the possibility of using blockchain technology to secure IoT devices, validate IoT device transactions, and establish a chain of trust to secure an IoT device mesh network, as well as investigate the plausibility of using immutable transactions for forensic analysis.
Bitcoin is popular not only with consumers, but also with cybercriminals (e.g., in ransomware and online extortion, and commercial online child exploitation). Given the potential of Bitcoin to be involved in a criminal investigation, the need to have an up-to-date and in-depth understanding on the forensic acquisition and analysis of Bitcoins is crucial. However, there has been limited forensic research of Bitcoin in the literature. The general focus of existing research is on postmortem analysis of specific locations (e.g. wallets on mobile devices), rather than a forensic approach that combines live data forensics and postmortem analysis to facilitate the identification, acquisition, and analysis of forensic traces relating to the use of Bitcoins on a system. Hence, the latter is the focus of this paper where we present an open source tool for live forensic and postmortem analysing automatically. Using this open source tool, we describe a list of target artifacts that can be obtained from a forensic investigation of popular Bitcoin clients and Web Wallets on different web browsers installed on Windows 7 and Windows 10 platforms.
The difficult of detecting, response, tracing the malicious behavior in cloud has brought great challenges to the law enforcement in combating cybercrimes. This paper presents a malicious behavior oriented framework of detection, emergency response, traceability, and digital forensics in cloud environment. A cloud-based malicious behavior detection mechanism based on SDN is constructed, which implements full-traffic flow detection technology and malicious virtual machine detection based on memory analysis. The emergency response and traceability module can clarify the types of the malicious behavior and the impacts of the events, and locate the source of the event. The key nodes and paths of the infection topology or propagation path of the malicious behavior will be located security measure will be dispatched timely. The proposed IaaS service based forensics module realized the virtualization facility memory evidence extraction and analysis techniques, which can solve volatile data loss problems that often happened in traditional forensic methods.
This paper presents PSO, an ontological framework and a methodology for improving physical security and insider threat detection. PSO can facilitate forensic data analysis and proactively mitigate insider threats by leveraging rule-based anomaly detection. In all too many cases, rule-based anomaly detection can detect employee deviations from organizational security policies. In addition, PSO can be considered a security provenance solution because of its ability to fully reconstruct attack patterns. Provenance graphs can be further analyzed to identify deceptive actions and overcome analytical mistakes that can result in bad decision-making, such as false attribution. Moreover, the information can be used to enrich the available intelligence (about intrusion attempts) that can form use cases to detect and remediate limitations in the system, such as loosely-coupled provenance graphs that in many cases indicate weaknesses in the physical security architecture. Ultimately, validation of the framework through use cases demonstrates and proves that PS0 can improve an organization's security posture in terms of physical security and insider threat detection.
The pervasive use of databases for the storage of critical and sensitive information in many organizations has led to an increase in the rate at which databases are exploited in computer crimes. While there are several techniques and tools available for database forensic analysis, such tools usually assume an apriori database preparation, such as relying on tamper-detection software to already be in place and the use of detailed logging. Further, such tools are built-in and thus can be compromised or corrupted along with the database itself. In practice, investigators need forensic and security audit tools that work on poorlyconfigured systems and make no assumptions about the extent of damage or malicious hacking in a database.In this paper, we present our database forensics methods, which are capable of examining database content from a storage (disk or RAM) image without using any log or file system metadata. We describe how these methods can be used to detect security breaches in an untrusted environment where the security threat arose from a privileged user (or someone who has obtained such privileges). Finally, we argue that a comprehensive and independent audit framework is necessary in order to detect and counteract threats in an environment where the security breach originates from an administrator (either at database or operating system level).
Cybercrime has been regarded understandably as a consequent compromise that follows the advent and perceived success of the computer and internet technologies. Equally effecting the privacy, trust, finance and welfare of the wealthy and low-income individuals and organizations, this menace has shown no indication of slowing down. Reports across the world have consistently shown exponential increase in the numbers and costs of cyber-incidents, and more worriedly low conviction rates of cybercriminals, over the years. Stakeholders increasingly explore ways to keep up with containing cyber-incidents by devising tools and techniques to increase the overall efficiency of investigations, but the gap keeps getting wider. However, criminal profiling - an investigative technique that has been proven to provide accurate and valuable directions to traditional crime investigations - has not seen a widespread application, including a formal methodology, to cybercrime investigations due to difficulties in its seamless transference. This paper, in a bid to address this problem, seeks to preliminarily identify the exact benefits criminal profiling has brought to successful traditional crime investigations and the benefits it can translate to cybercrime investigations, identify the challenges posed by the cyber-scene to its implementation in cybercrime investigations, and proffer a practicable solution.
T138 combat cyber crimes, electronic evidence have played an increasing role, but in judicial practice the electronic evidence were not highly applied because of the natural contradiction between the epistemic uncertainty of electronic evidence and the principle of discretionary evidence of judge in the court. in this paper, we put forward a layer-built method to analyze the relevancy of electronic evidence, and discussed their analytical process combined with the case study. The initial practice shows the model is feasible and has a consulting value in analyzing the relevancy of electronic evidence.
This paper presents a theoretical background of main research activity focused on the evaluation of wiping/erasure standards which are mostly implemented in specific software products developed and programming for data wiping. The information saved in storage devices often consists of metadata and trace data. Especially but not only these kinds of data are very important in the process of forensic analysis because they sometimes contain information about interconnection on another file. Most people saving their sensitive information on their local storage devices and later they want to secure erase these files but usually there is a problem with this operation. Secure file destruction is one of many Anti-forensics methods. The outcome of this paper is to define the future research activities focused on the establishment of the suitable digital environment. This environment will be prepared for testing and evaluating selected wiping standards and appropriate eraser software.
In recent decades, a significant research effort has been devoted to the development of forensic tools for retrieving information and detecting possible tampering of multimedia documents. A number of counter-forensic tools have been developed as well in order to impede a correct analysis. Such tools are often very effective due to the vulnerability of multimedia forensics tools, which are not designed to work in an adversarial environment. In this scenario, developing forensic techniques capable of granting good performance even in the presence of an adversary aiming at impeding the forensic analysis, is becoming a necessity. This turns out to be a difficult task, given the weakness of the traces the forensic analysis usually relies on. The goal of this paper is to provide an overview of the advances made over the last decade in the field of adversarial multimedia forensics. We first consider the view points of the forensic analyst and the attacker independently, then we review some of the attempts made to simultaneously take into account both perspectives by resorting to game theory. Eventually, we discuss the hottest open problems and outline possible paths for future research.