Biblio
An aspect of database forensics that has not received much attention in the academic research community yet is the presence of database triggers. Database triggers and their implementations have not yet been thoroughly analysed to establish what possible impact they could have on digital forensic analysis methods and processes. Conventional database triggers are defined to perform automatic actions based on changes in the database. These changes can be on the data level or the data definition level. Digital forensic investigators might thus feel that database triggers do not have an impact on their work. They are simply interrogating the data and metadata without making any changes. This paper attempts to establish if the presence of triggers in a database could potentially disrupt, manipulate or even thwart forensic investigations. The database triggers as defined in the SQL standard were studied together with a number of database trigger implementations. This was done in order to establish what aspects might have an impact on digital forensic analysis. It is demonstrated in this paper that some of the current database forensic analysis methods are impacted by the possible presence of certain types of triggers in a database. Furthermore, it finds that the forensic interpretation and attribution processes should be extended to include the handling and analysis of database triggers if they are present in a database.
As recently shown in 2013, Android-driven smartphones and tablet PCs are vulnerable to so-called cold boot attacks. With physical access to an Android device, forensic memory dumps can be acquired with tools like FROST that exploit the remanence effect of DRAM to read out what is left in memory after a short reboot. While FROST can in some configurations be deployed to break full disk encryption, encrypted user partitions are usually wiped during a cold boot attack, such that a post-mortem analysis of main memory remains the only source of digital evidence. Therefore, we provide an in-depth analysis of Android's memory structures for system and application level memory. To leverage FROST in the digital investigation process of Android cases, we provide open-source Volatility plugins to support an automated analysis and extraction of selected Dalvik VM memory structures.
In this paper, an edit detection method for forensic audio analysis is proposed. It develops and improves a previous method through changes in the signal processing chain and a novel detection criterion. As with the original method, electrical network frequency (ENF) analysis is central to the novel edit detector, for it allows monitoring anomalous variations of the ENF related to audio edit events. Working in unsupervised manner, the edit detector compares the extent of ENF variations, centered at its nominal frequency, with a variable threshold that defines the upper limit for normal variations observed in unedited signals. The ENF variations caused by edits in the signal are likely to exceed the threshold providing a mechanism for their detection. The proposed method is evaluated in both qualitative and quantitative terms via two distinct annotated databases. Results are reported for originally noisy database signals as well as versions of them further degraded under controlled conditions. A comparative performance evaluation, in terms of equal error rate (EER) detection, reveals that, for one of the tested databases, an improvement from 7% to 4% EER is achieved, respectively, from the original to the new edit detection method. When the signals are amplitude clipped or corrupted by broadband background noise, the performance figures of the novel method follow the same profile of those of the original method.
Precise fingerprinting of an operating system (OS) is critical to many security and forensics applications in the cloud, such as virtual machine (VM) introspection, penetration testing, guest OS administration, kernel dump analysis, and memory forensics. The existing OS fingerprinting techniques primarily inspect network packets or CPU states, and they all fall short in precision and usability. As the physical memory of a VM always exists in all these applications, in this article, we present OS-SOMMELIER+, a multi-aspect, memory exclusive approach for precise and robust guest OS fingerprinting in the cloud. It works as follows: given a physical memory dump of a guest OS, OS-SOMMELIER+ first uses a code hash based approach from kernel code aspect to determine the guest OS version. If code hash approach fails, OS-SOMMELIER+ then uses a kernel data signature based approach from kernel data aspect to determine the version. We have implemented a prototype system, and tested it with a number of Linux kernels. Our evaluation results show that the code hash approach is faster but can only fingerprint the known kernels, and data signature approach complements the code signature approach and can fingerprint even unknown kernels.