Biblio
The plethora of mobile apps introduce critical challenges to digital forensics practitioners, due to the diversity and the large number (millions) of mobile apps available to download from Google play, Apple store, as well as hundreds of other online app stores. Law enforcement investigators often find themselves in a situation that on the seized mobile phone devices, there are many popular and less-popular apps with interface of different languages and functionalities. Investigators would not be able to have sufficient expert-knowledge about every single app, sometimes nor even a very basic understanding about what possible evidentiary data could be discoverable from these mobile devices being investigated. Existing literature in digital forensic field showed that most such investigations still rely on the investigator's manual analysis using mobile forensic toolkits like Cellebrite and Encase. The problem with such manual approaches is that there is no guarantee on the completeness of such evidence discovery. Our goal is to develop an automated mobile app analysis tool to analyze an app and discover what types of and where forensic evidentiary data that app generate and store locally on the mobile device or remotely on external 3rd-party server(s). With the app analysis tool, we will build a database of mobile apps, and for each app, we will create a list of app-generated evidence in terms of data types, locations (and/or sequence of locations) and data format/syntax. The outcome from this research will help digital forensic practitioners to reduce the complexity of their case investigations and provide a better completeness guarantee of evidence discovery, thereby deliver timely and more complete investigative results, and eventually reduce backlogs at crime labs. In this paper, we will present the main technical approaches for us to implement a dynamic Taint analysis tool for Android apps forensics. With the tool, we have analyzed 2,100 real-world Android apps. For each app, our tool produces the list of evidentiary data (e.g., GPS locations, device ID, contacts, browsing history, and some user inputs) that the app could have collected and stored on the devices' local storage in the forms of file or SQLite database. We have evaluated our tool using both benchmark apps and real-world apps. Our results demonstrated that the initial success of our tool in accurately discovering the evidentiary data.
In this paper, we discuss the digital forensic procedure and techniques for analyzing the local artifacts from four popular Instant Messaging applications in Android. As part of our findings, the user chat messages details and contacts were investigated for each application. By using two smartphones with different brands and the latest Android operating systems as experimental objects, we conducted digital investigations in a forensically sound manner. We summarize our findings regarding the different Instant Messaging chat modes and the corresponding encryption status of artifacts for each of the four applications. Our findings can be helpful to many mobile forensic investigations. Additionally, these findings may present values to Android system developers, Android mobile app developers, mobile security researchers as well as mobile users.
Redundant capacity in filesystem timestamps is recently proposed in the literature as an effective means for information hiding and data leakage. Here, we evaluate the steganographic capabilities of such channels and propose techniques to aid digital forensics investigation towards identifying and detecting manipulated filesystem timestamps. Our findings indicate that different storage media and interfaces exhibit different timestamp creation patterns. Such differences can be utilized to characterize file source media and increase the analysis capabilities of the incident response process.
Rapid advancement in wearable technology has unlocked a tremendous potential of its applications in the medical domain. Among the challenges in making the technology more useful for medical purposes is the lack of confidence in the data thus generated and communicated. Incentives have led to attacks on such systems. We propose a novel lightweight scheme to securely log the data from bodyworn sensing devices by utilizing neighboring devices as witnesses who store the fingerprints of data in Bloom filters to be later used for forensics. Medical data from each sensor is stored at various locations of the system in chronological epoch-level blocks chained together, similar to the blockchain. Besides secure logging, the scheme offers to secure other contextual information such as localization and timestamping. We prove the effectiveness of the scheme through experimental results. We define performance parameters of our scheme and quantify their cost benefit trade-offs through simulation.
In this paper, we describe an efficient methodology to guide investigators during network forensic analysis. To this end, we introduce the concept of core attack graph, a compact representation of the main routes an attacker can take towards specific network targets. Such compactness allows forensic investigators to focus their efforts on critical nodes that are more likely to be part of attack paths, thus reducing the overall number of nodes (devices, network privileges) that need to be examined. Nevertheless, core graphs also allow investigators to hierarchically explore the graph in order to retrieve different levels of summarised information. We have evaluated our approach over different network topologies varying parameters such as network size, density, and forensic evaluation threshold. Our results demonstrate that we can achieve the same level of accuracy provided by standard logical attack graphs while significantly reducing the exploration rate of the network.
The veil of anonymity provided by smartphones with pre-paid SIM cards, public Wi-Fi hotspots, and distributed networks like Tor has drastically complicated the task of identifying users of social media during forensic investigations. In some cases, the text of a single posted message will be the only clue to an author's identity. How can we accurately predict who that author might be when the message may never exceed 140 characters on a service like Twitter? For the past 50 years, linguists, computer scientists, and scholars of the humanities have been jointly developing automated methods to identify authors based on the style of their writing. All authors possess peculiarities of habit that influence the form and content of their written works. These characteristics can often be quantified and measured using machine learning algorithms. In this paper, we provide a comprehensive review of the methods of authorship attribution that can be applied to the problem of social media forensics. Furthermore, we examine emerging supervised learning-based methods that are effective for small sample sizes, and provide step-by-step explanations for several scalable approaches as instructional case studies for newcomers to the field. We argue that there is a significant need in forensics for new authorship attribution algorithms that can exploit context, can process multi-modal data, and are tolerant to incomplete knowledge of the space of all possible authors at training time.
Insider misuse has become a major risk for many organizations. One of the most common forms of misuses is data leakage. Such threats have turned into a real challenge to overcome and mitigate. Whilst prevention is important, incidents will inevitably occur and as such attribution of the leakage is key to ensuring appropriate recourse. Although digital forensics capability has grown rapidly in the process of analyzing the digital evidences, a key barrier is often being able to associate the evidence back to an individual who leaked the data. Stolen credentials and the Trojan defense are two commonly cited arguments used to complicate the issue of attribution. Furthermore, the use of a digital certificate or user ID would only associate to the account not to the individual. This paper proposes a more proactive model whereby a user's biometric information is transparently captured (during normal interactions) and embedding within the digital objects they interact with (thereby providing a direct link between the last user using any document or object). An investigation into the possibility of embedding individuals' biometric signals into image files is presented, with a particular focus upon the ability to recover the biometric information under varying degrees of modification attack. The experimental results show that even when the watermarked object is significantly modified (e.g. only 25% of the image is available) it is still possible to recover those embedded biometric information.
Besides its enormous benefits to the industry and community the Internet of Things (IoT) has introduced unique security challenges to its enablers and adopters. As the trend in cybersecurity threats continue to grow, it is likely to influence IoT deployments. Therefore it is eminent that besides strengthening the security of IoT systems we develop effective digital forensics techniques that when breaches occur we can track the sources of attacks and bring perpetrators to the due process with reliable digital evidence. The biggest challenge in this regard is the heterogeneous nature of devices in IoT systems and lack of unified standards. In this paper we investigate digital forensics from IoT perspectives. We argue that besides traditional digital forensics practices it is important to have application-specific forensics in place to ensure collection of evidence in context of specific IoT applications. We consider top three IoT applications and introduce a model which deals with not just traditional forensics but is applicable in digital as well as application-specific forensics process. We believe that the proposed model will enable collection, examination, analysis and reporting of forensically sound evidence in an IoT application-specific digital forensics investigation.
Digital forensic investigators today are faced with numerous problems when recovering footprints of criminal activity that involve the use of computer systems. Investigators need the ability to recover evidence in a forensically sound manner, even when criminals actively work to alter the integrity, veracity, and provenance of data, applications and software that are used to support illicit activities. In many ways, operating systems (OS) can be strengthened from a technological viewpoint to support verifiable, accurate, and consistent recovery of system data when needed for forensic collection efforts. In this paper, we extend the ideas for forensic-friendly OS design by proposing the use of a practical form of computing on encrypted data (CED) and computing with encrypted functions (CEF) which builds upon prior work on component encryption (in circuits) and white-box cryptography (in software). We conduct experiments on sample programs to provide analysis of the approach based on security and efficiency, illustrating how component encryption can strengthen key OS functions and improve tamper-resistance to anti-forensic activities. We analyze the tradeoff space for use of the algorithm in a holistic approach that provides additional security and comparable properties to fully homomorphic encryption (FHE).
As the development of technology increases, the security risk also increases. This has affected most organizations, irrespective of size, as they depend on the increasingly pervasive technology to perform their daily tasks. However, the dependency on technology has introduced diverse security vulnerabilities in organizations which requires a reliable preparedness for probable forensic investigation of the unauthorized incident. Keystroke dynamics is one of the cost-effective methods for collecting potential digital evidence. This paper presents a keystroke pattern analysis technique suitable for the collection of complementary potential digital evidence for forensic readiness. The proposition introduced a technique that relies on the extraction of reliable behavioral signature from user activity. Experimental validation of the proposition demonstrates the effectiveness of proposition using a multi-scheme classifier. The overall goal is to have forensically sound and admissible keystroke evidence that could be presented during the forensic investigation to minimize the costs and time of the investigation.
Whilst the fundamental composition of digital forensic readiness have been expounded by myriad literature, the integration of behavioral modalities have not been considered. Behavioral modalities such as keystroke and mouse dynamics are key components of human behavior that have been widely used in complementing security in an organization. However, these modalities present better forensic properties, thus more relevant in investigation/incident response, than its deployment in security. This study, therefore, proposes a forensic framework which encompasses a step-by-step guide on how to integrate behavioral biometrics into digital forensic readiness process. The proposed framework, behavioral biometrics-based digital forensics readiness framework (BBDFRF) comprised four phases which include data acquisition, preservation, user-authentication, and user pattern attribution phase. The proposed BBDFRF is evaluated in line with the ISO/IEC 27043 standard for proactive forensics, to address the gap on the integration of the behavioral biometrics into proactive forensics. BBDFRF thus extends the body of literature on the forensic capability of behavioral biometrics. The implementation of this framework can be used to also strengthen the security mechanism of an organization, particularly on continuous authentication.
Business or military missions are supported by hardware and software systems. Unanticipated cyber activities occurring in supporting systems can impact such missions. In order to quantify such impact, we describe a layered graphical model as an extension of forensic investigation. Our model has three layers: the upper layer models operational tasks that constitute the mission and their inter-dependencies. The middle layer reconstructs attack scenarios from available evidence to reconstruct their inter-relationships. In cases where not all evidence is available, the lower level reconstructs potentially missing attack steps. Using the three levels of graphs constructed in these steps, we present a method to compute the impacts of attack activities on missions. We use NIST National Vulnerability Database's (NVD)-Common Vulnerability Scoring System (CVSS) scores or forensic investigators' estimates in our impact computations. We present a case study to show the utility of our model.
Cloud computing paradigm continues to revolutionize the way business processes are being conducted through the provision of massive resources, reliability across networks and ability to offer parallel processing. However, miniaturization, proliferation and nanotechnology within devices has enabled digitization of almost every object which eventually has seen the rise of a new technological marvel dubbed Internet of Things (IoT). IoT enables self-configurable/smart devices to connect intelligently through Radio Frequency Identification (RFID), WI-FI, LAN, GPRS and other methods by further enabling timeously processing of information. Based on these developments, the integration of the cloud and IoT infrastructures has led to an explosion of the amount of data being exchanged between devices which have in turn enabled malicious actors to use this as a platform to launch various cybercrime activities. Consequently, digital forensics provides a significant approach that can be used to provide an effective post-event response mechanism to these malicious attacks in cloud-based IoT infrastructures. Therefore, the problem being addressed is that, at the time of writing this paper, there still exist no accepted standards or frameworks for conducting digital forensic investigation on cloud-based IoT infrastructures. As a result, the authors have proposed a cloud-centric framework that is able to isolate Big data as forensic evidence from IoT (CFIBD-IoT) infrastructures for proper analysis and examination. It is the authors' opinion that if the CFIBD-IoT framework is implemented fully it will support cloud-based IoT tool creation as well as support future investigative techniques in the cloud with a degree of certainty.
In our era, most of the communication between people is realized in the form of electronic messages and especially through smart mobile devices. As such, the written text exchanged suffers from bad use of punctuation, misspelling words, continuous chunk of several words without spaces, tables, internet addresses etc. which make traditional text analytics methods difficult or impossible to be applied without serious effort to clean the dataset. Our proposed method in this paper can work in massive noisy and scrambled texts with minimal preprocessing by removing special characters and spaces in order to create a continuous string and detect all the repeated patterns very efficiently using the Longest Expected Repeated Pattern Reduced Suffix Array (LERP-RSA) data structure and a variant of All Repeated Patterns Detection (ARPaD) algorithm. Meta-analyses of the results can further assist a digital forensics investigator to detect important information to the chunk of text analyzed.
The Internet of Vehicles (IoV) is a complex and dynamic mobile network system that enables information sharing between vehicles, their surrounding sensors, and clouds. While IoV opens new opportunities in various applications and services to provide safety on the road, it introduces new challenges in the field of digital forensics investigations. The existing tools and procedures of digital forensics cannot meet the highly distributed, decentralized, dynamic, and mobile infrastructures of the IoV. Forensic investigators will face challenges while identifying necessary pieces of evidence from the IoV environment, and collecting and analyzing the evidence. In this article, we propose TrustIoV - a digital forensic framework for the IoV systems that provides mechanisms to collect and store trustworthy evidence from the distributed infrastructure. Trust-IoV maintains a secure provenance of the evidence to ensure the integrity of the stored evidence and allows investigators to verify the integrity of the evidence during an investigation. Our experimental results on a simulated environment suggest that Trust-IoV can operate with minimal overhead while ensuring the trustworthiness of evidence in a strong adversarial scenario.
Digital devices contain increasingly more data and applications. This means more data to handle and a larger amount of different types of traces to recover and consider in digital forensic investigations. Both present a challenge to data recovery approaches, requiring higher performance and increased flexibility. In order to progress to a long-term sustainable approach to automated data recovery, this paper proposes a partitioning into manual, custom, formalized and self-improving approaches. These approaches are described along with research directions to consider: building universal abstractions, selecting appropriate techniques and developing user-friendly tools.
According to the 2016 Internet Security Threat Report by Symantec, there are around 431 million variants of malware known. This effort focuses on malware used for spying on user's activities, remotely controlling devices, and identity and credential theft within a Windows based operating system. As Windows operating systems create and maintain a log of all events that are encountered, various malware are tested on virtual machines to determine what events they trigger in the Windows logs. The observations are compiled into Operating System specific lookup tables that can then be used to find the tested malware on other computers with the same Operating System.
With the outgrowth of video editing tools, video information trustworthiness becomes a hypersensitive field. Today many devices have the capability of capturing digital videos such as CCTV, digital cameras and mobile phones and these videos may transmitted over the Internet or any other non secure channel. As digital video can be used to as supporting evidence, it has to be protected against manipulation or tampering. As most video authentication techniques are based on watermarking and digital signatures, these techniques are effectively used in copyright purposes but difficult to implement in other cases such as video surveillance or in videos captured by consumer's cameras. In this paper we propose an intelligent technique for video authentication which uses the video local information which makes it useful for real world applications. The proposed algorithm relies on the video's statistical local information which was applied on a dataset of videos captured by a range of consumer video cameras. The results show that the proposed algorithm has potential to be a reliable intelligent technique in digital video authentication without the need to use for SVM classifier which makes it faster and less computationally expensive in comparing with other intelligent techniques.
The usage of Information and Communication Technologies (ICTs) pervades everyday's life. If it is true that ICT contributed to improve the quality of our life, it is also true that new forms of (cyber)crime have emerged in this setting. The diversity and amount of information forensic investigators need to cope with, when tackling a cyber-crime case, call for tools and techniques where knowledge is the main actor. Current approaches leave to the investigator the chore of integrating the diverse sources of evidence relevant for a case thus hindering the automatic generation of reusable knowledge. This paper describes an architecture that lifts the classical phases of a digital forensic investigation to a knowledge-driven setting. We discuss how the usage of languages and technologies originating from the Semantic Web proposal can complement digital forensics tools so that knowledge becomes a first-class citizen. Our architecture enables to perform in an integrated way complex forensic investigations and, as a by-product, build a knowledge base that can be consulted to gain insights from previous cases. Our proposal has been inspired by real-world scenarios emerging in the context of an Italian research project about cyber security.
Honey pots and honey nets are popular tools in the area of network security and network forensics. The deployment and usage of these tools are influenced by a number of technical and legal issues, which need to be carefully considered together. In this paper, we outline privacy issues of honey pots and honey nets with respect to technical aspects. The paper discusses the legal framework of privacy, legal ground to data processing, and data collection. The analysis of legal issues is based on EU law and is supported by discussions on privacy and related issues. This paper is one of the first papers which discuss in detail privacy issues of honey pots and honey nets in accordance with EU law.