Visible to the public Biblio

Filters: Keyword is standard model  [Clear All Filters]
2021-05-25
Susilo, Willy, Duong, Dung Hoang, Le, Huy Quoc.  2020.  Efficient Post-quantum Identity-based Encryption with Equality Test. 2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS). :633—640.
Public key encryption with equality test (PKEET) enables the testing whether two ciphertexts encrypt the same message. Identity-based encryption with equality test (IBEET) simplify the certificate management of PKEET, which leads to many potential applications such as in smart city applications or Wireless Body Area Networks. Lee et al. (ePrint 2016) proposed a generic construction of IBEET scheme in the standard model utilising a 3-level hierachy IBE together with a one-time signature scheme, which can be instantiated in lattice setting. Duong et al. (ProvSec 2019) proposed the first direct construction of IBEET in standard model from lattices. However, their scheme achieve CPA security only. In this paper, we improve the Duong et al.'s construction by proposing an IBEET in standard model which achieves CCA2 security and with smaller ciphertext and public key size.
2020-07-24
Li, Qi, Ma, Jianfeng, Xiong, Jinbo, Zhang, Tao, Liu, Ximeng.  2013.  Fully Secure Decentralized Key-Policy Attribute-Based Encryption. 2013 5th International Conference on Intelligent Networking and Collaborative Systems. :220—225.

In previous multi-authority key-policy attribute-based Encryption (KP-ABE) schemes, either a super power central authority (CA) exists, or multiple attribute authorities (AAs) must collaborate in initializing the system. In addition, those schemes are proved security in the selective model. In this paper, we propose a new fully secure decentralized KP-ABE scheme, where no CA exists and there is no cooperation between any AAs. To become an AA, a participant needs to create and publish its public parameters. All the user's private keys will be linked with his unique global identifier (GID). The proposed scheme supports any monotonic access structure which can be expressed by a linear secret sharing scheme (LSSS). We prove the full security of our scheme in the standard model. Our scheme is also secure against at most F-1 AAs corruption, where F is the number of AAs in the system. The efficiency of our scheme is almost as well as that of the underlying fully secure single-authority KP-ABE system.

2017-10-27
Xu, Peng, Li, Jingnan, Wang, Wei, Jin, Hai.  2016.  Anonymous Identity-Based Broadcast Encryption with Constant Decryption Complexity and Strong Security. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :223–233.
Anonymous Identity-Based Broadcast Encryption (AIBBE) allows a sender to broadcast a ciphertext to multi-receivers, and keeps receivers' anonymity. The existing AIBBE schemes fail to achieve efficient decryption or strong security, like the constant decryption complexity, the security under the adaptive attack, or the security in the standard model. Hence, we propose two new AIBBE schemes to overcome the drawbacks of previous schemes in the state-of-art. The biggest contribution in our work is the proposed AIBBE scheme with constant decryption complexity and the provable security under the adaptive attack in the standard model. This scheme should be the first one to obtain advantages in all above mentioned aspects, and has sufficient contribution in theory due to its strong security. We also propose another AIBBE scheme in the Random Oracle (RO) model, which is of sufficient interest in practice due to our experiment.
2017-10-04
Sun, Shi-Feng, Gu, Dawu, Liu, Joseph K., Parampalli, Udaya, Yuen, Tsz Hon.  2016.  Efficient Construction of Completely Non-Malleable CCA Secure Public Key Encryption. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :901–906.
Non-malleability is an important and intensively studied security notion for many cryptographic primitives. In the context of public key encryption, this notion means it is infeasible for an adversary to transform an encryption of some message m into one of a related message m' under the given public key. Although it has provided a strong security property for many applications, it still does not suffice for some scenarios like the system where the users could issue keys on-the-fly. In such settings, the adversary may have the power to transform the given public key and the ciphertext. To withstand such attacks, Fischlin introduced a stronger notion, known as complete non-malleability, which requires that the non-malleability property be preserved even for the adversaries attempting to produce a ciphertext of some related message under the transformed public key. To date, many schemes satisfying this stronger security have been proposed, but they are either inefficient or proved secure in the random oracle model. In this work, we put forward a new encryption scheme in the common reference string model. Based on the standard DBDH assumption, the proposed scheme is proved completely non-malleable secure against adaptive chosen ciphertext attacks in the standard model. In our scheme, the well-formed public keys and ciphertexts could be publicly recognized without drawing support from unwieldy techniques like non-interactive zero knowledge proofs or one-time signatures, thus achieving a better performance.
2017-08-18
Sun, Shi-Feng, Gu, Dawu, Liu, Joseph K., Parampalli, Udaya, Yuen, Tsz Hon.  2016.  Efficient Construction of Completely Non-Malleable CCA Secure Public Key Encryption. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :901–906.

Non-malleability is an important and intensively studied security notion for many cryptographic primitives. In the context of public key encryption, this notion means it is infeasible for an adversary to transform an encryption of some message m into one of a related message m' under the given public key. Although it has provided a strong security property for many applications, it still does not suffice for some scenarios like the system where the users could issue keys on-the-fly. In such settings, the adversary may have the power to transform the given public key and the ciphertext. To withstand such attacks, Fischlin introduced a stronger notion, known as complete non-malleability, which requires that the non-malleability property be preserved even for the adversaries attempting to produce a ciphertext of some related message under the transformed public key. To date, many schemes satisfying this stronger security have been proposed, but they are either inefficient or proved secure in the random oracle model. In this work, we put forward a new encryption scheme in the common reference string model. Based on the standard DBDH assumption, the proposed scheme is proved completely non-malleable secure against adaptive chosen ciphertext attacks in the standard model. In our scheme, the well-formed public keys and ciphertexts could be publicly recognized without drawing support from unwieldy techniques like non-interactive zero knowledge proofs or one-time signatures, thus achieving a better performance.

2017-07-24
Xu, Peng, Li, Jingnan, Wang, Wei, Jin, Hai.  2016.  Anonymous Identity-Based Broadcast Encryption with Constant Decryption Complexity and Strong Security. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :223–233.

Anonymous Identity-Based Broadcast Encryption (AIBBE) allows a sender to broadcast a ciphertext to multi-receivers, and keeps receivers' anonymity. The existing AIBBE schemes fail to achieve efficient decryption or strong security, like the constant decryption complexity, the security under the adaptive attack, or the security in the standard model. Hence, we propose two new AIBBE schemes to overcome the drawbacks of previous schemes in the state-of-art. The biggest contribution in our work is the proposed AIBBE scheme with constant decryption complexity and the provable security under the adaptive attack in the standard model. This scheme should be the first one to obtain advantages in all above mentioned aspects, and has sufficient contribution in theory due to its strong security. We also propose another AIBBE scheme in the Random Oracle (RO) model, which is of sufficient interest in practice due to our experiment.