Visible to the public Biblio

Filters: Keyword is matrix factorization  [Clear All Filters]
2021-08-31
Rathod, Pawan Manoj, Shende, RajKumar K..  2020.  Recommendation System using optimized Matrix Multiplication Algorithm. 2020 IEEE International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC). :1–4.
Volume, Variety, Velocity, Veracity & Value of data has drawn the attention of many analysts in the last few years. Performance optimization and comparison are the main challenges we face when we talk about the humongous volume of data. Data Analysts use data for activities like forecasting or deep learning and to process these data various tools are available which helps to achieve this task with minimum efforts. Recommendation System plays a crucial role while running any business such as a shopping website or travel agency where the system recommends the user according to their search history, likes, comments, or their past order/booking details. Recommendation System works on various strategies such as Content Filtering, Collaborative Filtering, Neighborhood Methods, or Matrix Factorization methods. For achieving maximum efficiency and accuracy based on the data a specific strategy can be the best case or the worst case for that scenario. Matrix Factorization is the key point of interest in this work. Matrix Factorization strategy includes multiplication of user matrix and item matrix in-order to get a rating matrix that can be recommended to the users. Matrix Multiplication can be achieved by using various algorithms such as Naive Algorithm, Strassen Algorithm, Coppersmith - Winograd (CW) Algorithm. In this work, a new algorithm is proposed to achieve less amount of time and space complexity used in-order for performing matrix multiplication which helps to get the results much faster. By using the Matrix Factorization strategy with various Matrix Multiplication Algorithm we are going to perform a comparative analysis of the same to conclude the proposed algorithm is more efficient.
2021-01-11
Wang, J., Wang, A..  2020.  An Improved Collaborative Filtering Recommendation Algorithm Based on Differential Privacy. 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS). :310–315.
In this paper, differential privacy protection method is applied to matrix factorization method that used to solve the recommendation problem. For centralized recommendation scenarios, a collaborative filtering recommendation model based on matrix factorization is established, and a matrix factorization mechanism satisfying ε-differential privacy is proposed. Firstly, the potential characteristic matrix of users and projects is constructed. Secondly, noise is added to the matrix by the method of target disturbance, which satisfies the differential privacy constraint, then the noise matrix factorization model is obtained. The parameters of the model are obtained by the stochastic gradient descent algorithm. Finally, the differential privacy matrix factorization model is used for score prediction. The effectiveness of the algorithm is evaluated on the public datasets including Movielens and Netflix. The experimental results show that compared with the existing typical recommendation methods, the new matrix factorization method with privacy protection can recommend within a certain range of recommendation accuracy loss while protecting the users' privacy information.
2020-11-23
Li, W., Zhu, H., Zhou, X., Shimizu, S., Xin, M., Jin, Q..  2018.  A Novel Personalized Recommendation Algorithm Based on Trust Relevancy Degree. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :418–422.
The rapid development of the Internet and ecommerce has brought a lot of convenience to people's life. Personalized recommendation technology provides users with services that they may be interested according to users' information such as personal characteristics and historical behaviors. The research of personalized recommendation has been a hot point of data mining and social networks. In this paper, we focus on resolving the problem of data sparsity based on users' rating data and social network information, introduce a set of new measures for social trust and propose a novel personalized recommendation algorithm based on matrix factorization combining trust relevancy. Our experiments were performed on the Dianping datasets. The results show that our algorithm outperforms traditional approaches in terms of accuracy and stability.
2020-10-05
Parvina, Hashem, Moradi, Parham, Esmaeilib, Shahrokh, Jalilic, Mahdi.  2018.  An Efficient Recommender System by Integrating Non-Negative Matrix Factorization With Trust and Distrust Relationships. 2018 IEEE Data Science Workshop (DSW). :135—139.

Matrix factorization (MF) has been proved to be an effective approach to build a successful recommender system. However, most current MF-based recommenders cannot obtain high prediction accuracy due to the sparseness of user-item matrix. Moreover, these methods suffer from the scalability issues when applying on large-scale real-world tasks. To tackle these issues, in this paper a social regularization method called TrustRSNMF is proposed that incorporates the social trust information of users in nonnegative matrix factorization framework. The proposed method integrates trust statements along with user-item ratings as an additional information source into the recommendation model to deal with the data sparsity and cold-start issues. In order to evaluate the effectiveness of the proposed method, a number of experiments are performed on two real-world datasets. The obtained results demonstrate significant improvements of the proposed method compared to state-of-the-art recommendation methods.

2018-08-23
Xi, X., Zhang, F., Lian, Z..  2017.  Implicit Trust Relation Extraction Based on Hellinger Distance. 2017 13th International Conference on Semantics, Knowledge and Grids (SKG). :223–227.

Recent studies have shown that adding explicit social trust information to social recommendation significantly improves the prediction accuracy of ratings, but it is difficult to obtain a clear trust data among users in real life. Scholars have studied and proposed some trust measure methods to calculate and predict the interaction and trust between users. In this article, a method of social trust relationship extraction based on hellinger distance is proposed, and user similarity is calculated by describing the f-divergence of one side node in user-item bipartite networks. Then, a new matrix factorization model based on implicit social relationship is proposed by adding the extracted implicit social relations into the improved matrix factorization. The experimental results support that the effect of using implicit social trust to recommend is almost the same as that of using actual explicit user trust ratings, and when the explicit trust data cannot be extracted, our method has a better effect than the other traditional algorithms.

2018-05-24
Bampis, C. G., Rusu, C., Hajj, H., Bovik, A. C..  2017.  Robust Matrix Factorization for Collaborative Filtering in Recommender Systems. 2017 51st Asilomar Conference on Signals, Systems, and Computers. :415–419.

Recently, matrix factorization has produced state-of-the-art results in recommender systems. However, given the typical sparsity of ratings, the often large problem scale, and the large number of free parameters that are often implied, developing robust and efficient models remains a challenge. Previous works rely on dense and/or sparse factor matrices to estimate unavailable user ratings. In this work we develop a new formulation for recommender systems that is based on projective non-negative matrix factorization, but relaxes the non-negativity constraint. Driven by a simple yet instructive intuition, the proposed formulation delivers promising and stable results that depend on a minimal number of parameters. Experiments that we conducted on two popular recommender system datasets demonstrate the efficiency and promise of our proposed method. We make available our code and datasets at https://github.com/christosbampis/PCMF\_release.

2018-03-26
Xin, Doris, Mayoraz, Nicolas, Pham, Hubert, Lakshmanan, Karthik, Anderson, John R..  2017.  Folding: Why Good Models Sometimes Make Spurious Recommendations. Proceedings of the Eleventh ACM Conference on Recommender Systems. :201–209.

In recommender systems based on low-rank factorization of a partially observed user-item matrix, a common phenomenon that plagues many otherwise effective models is the interleaving of good and spurious recommendations in the top-K results. A single spurious recommendation can dramatically impact the perceived quality of a recommender system. Spurious recommendations do not result in serendipitous discoveries but rather cognitive dissonance. In this work, we investigate folding, a major contributing factor to spurious recommendations. Folding refers to the unintentional overlap of disparate groups of users and items in the low-rank embedding vector space, induced by improper handling of missing data. We formally define a metric that quantifies the severity of folding in a trained system, to assist in diagnosing its potential to make inappropriate recommendations. The folding metric complements existing information retrieval metrics that focus on the number of good recommendations and their ranks but ignore the impact of undesired recommendations. We motivate the folding metric definition on synthetic data and evaluate its effectiveness on both synthetic and real world datasets. In studying the relationship between the folding metric and other characteristics of recommender systems, we observe that optimizing for goodness metrics can lead to high folding and thus more spurious recommendations.

2018-02-15
Ni, J., Cheng, W., Zhang, K., Song, D., Yan, T., Chen, H., Zhang, X..  2017.  Ranking Causal Anomalies by Modeling Local Propagations on Networked Systems. 2017 IEEE International Conference on Data Mining (ICDM). :1003–1008.

Complex systems are prevalent in many fields such as finance, security and industry. A fundamental problem in system management is to perform diagnosis in case of system failure such that the causal anomalies, i.e., root causes, can be identified for system debugging and repair. Recently, invariant network has proven a powerful tool in characterizing complex system behaviors. In an invariant network, a node represents a system component, and an edge indicates a stable interaction between two components. Recent approaches have shown that by modeling fault propagation in the invariant network, causal anomalies can be effectively discovered. Despite their success, the existing methods have a major limitation: they typically assume there is only a single and global fault propagation in the entire network. However, in real-world large-scale complex systems, it's more common for multiple fault propagations to grow simultaneously and locally within different node clusters and jointly define the system failure status. Inspired by this key observation, we propose a two-phase framework to identify and rank causal anomalies. In the first phase, a probabilistic clustering is performed to uncover impaired node clusters in the invariant network. Then, in the second phase, a low-rank network diffusion model is designed to backtrack causal anomalies in different impaired clusters. Extensive experimental results on real-life datasets demonstrate the effectiveness of our method.

2017-10-04
Donkers, Tim, Loepp, Benedikt, Ziegler, Jürgen.  2016.  Tag-Enhanced Collaborative Filtering for Increasing Transparency and Interactive Control. Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization. :169–173.
To increase transparency and interactive control in Recommender Systems, we extended the Matrix Factorization technique widely used in Collaborative Filtering by learning an integrated model of user-generated tags and latent factors derived from user ratings. Our approach enables users to manipulate their preference profile expressed implicitly in the (intransparent) factor space through explicitly presented tags. Furthermore, it seems helpful in cold-start situations since user preferences can be elicited via meaningful tags instead of ratings. We evaluate this approach and present a user study that to our knowledge is the most extensive empirical study of tag-enhanced recommending to date. Among other findings, we obtained promising results in terms of recommendation quality and perceived transparency, as well as regarding user experience, which we analyzed by Structural Equation Modeling.
2017-08-18
Kim, Sungwook, Kim, Jinsu, Koo, Dongyoung, Kim, Yuna, Yoon, Hyunsoo, Shin, Junbum.  2016.  Efficient Privacy-Preserving Matrix Factorization via Fully Homomorphic Encryption: Extended Abstract. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :617–628.

Recommendation systems become popular in our daily life. It is well known that the more the release of users' personal data, the better the quality of recommendation. However, such services raise serious privacy concerns for users. In this paper, focusing on matrix factorization-based recommendation systems, we propose the first privacy-preserving matrix factorization using fully homomorphic encryption. On inputs of encrypted users' ratings, our protocol performs matrix factorization over the encrypted data and returns encrypted outputs so that the recommendation system knows nothing on rating values and resulting user/item profiles. It provides a way to obfuscate the number and list of items a user rated without harming the accuracy of recommendation, and additionally protects recommender's tuning parameters for business benefit and allows the recommender to optimize the parameters for quality of service. To overcome performance degradation caused by the use of fully homomorphic encryption, we introduce a novel data structure to perform computations over encrypted vectors, which are essential operations for matrix factorization, through secure 2-party computation in part. With the data structure, the proposed protocol requires dozens of times less computation cost over those of previous works. Our experiments on a personal computer with 3.4 GHz 6-cores 64 GB RAM show that the proposed protocol runs in 1.5 minutes per iteration. It is more efficient than Nikolaenko et al.'s work proposed in CCS 2013, in which it took about 170 minutes on two servers with 1.9 GHz 16-cores 128 GB RAM.

2017-08-02
Twardowski, Bart\textbackslashlomiej.  2016.  Modelling Contextual Information in Session-Aware Recommender Systems with Neural Networks. Proceedings of the 10th ACM Conference on Recommender Systems. :273–276.

Preparing recommendations for unknown users or such that correctly respond to the short-term needs of a particular user is one of the fundamental problems for e-commerce. Most of the common Recommender Systems assume that user identification must be explicit. In this paper a Session-Aware Recommender System approach is presented where no straightforward user information is required. The recommendation process is based only on user activity within a single session, defined as a sequence of events. This information is incorporated in the recommendation process by explicit context modeling with factorization methods and a novel approach with Recurrent Neural Network (RNN). Compared to the session modeling approach, RNN directly models the dependency of user observed sequential behavior throughout its recurrent structure. The evaluation discusses the results based on sessions from real-life system with ephemeral items (identified only by the set of their attributes) for the task of top-n best recommendations.

Rafailidis, Dimitrios.  2016.  Modeling Trust and Distrust Information in Recommender Systems via Joint Matrix Factorization with Signed Graphs. Proceedings of the 31st Annual ACM Symposium on Applied Computing. :1060–1065.

We propose an efficient recommendation algorithm, by incorporating the side information of users' trust and distrust social relationships into the learning process of a Joint Non-negative Matrix Factorization technique based on Signed Graphs, namely JNMF-SG. The key idea in this study is to generate clusters based on signed graphs, considering positive and negative weights for the trust and distrust relationships, respectively. Using a spectral clustering approach for signed graphs, the clusters are extracted on condition that users with positive connections should lie close, while users with negative ones should lie far. Then, we propose a Joint Non-negative Matrix factorization framework, by generating the final recommendations, using the user-item and user-cluster associations over the joint factorization. In our experiments with a dataset from a real-world social media platform, we show that we significantly increase the recommendation accuracy, compared to state-of-the-art methods that also consider the trust and distrust side information in matrix factorization.