Biblio
Matrix factorization (MF) has been proved to be an effective approach to build a successful recommender system. However, most current MF-based recommenders cannot obtain high prediction accuracy due to the sparseness of user-item matrix. Moreover, these methods suffer from the scalability issues when applying on large-scale real-world tasks. To tackle these issues, in this paper a social regularization method called TrustRSNMF is proposed that incorporates the social trust information of users in nonnegative matrix factorization framework. The proposed method integrates trust statements along with user-item ratings as an additional information source into the recommendation model to deal with the data sparsity and cold-start issues. In order to evaluate the effectiveness of the proposed method, a number of experiments are performed on two real-world datasets. The obtained results demonstrate significant improvements of the proposed method compared to state-of-the-art recommendation methods.
Recent studies have shown that adding explicit social trust information to social recommendation significantly improves the prediction accuracy of ratings, but it is difficult to obtain a clear trust data among users in real life. Scholars have studied and proposed some trust measure methods to calculate and predict the interaction and trust between users. In this article, a method of social trust relationship extraction based on hellinger distance is proposed, and user similarity is calculated by describing the f-divergence of one side node in user-item bipartite networks. Then, a new matrix factorization model based on implicit social relationship is proposed by adding the extracted implicit social relations into the improved matrix factorization. The experimental results support that the effect of using implicit social trust to recommend is almost the same as that of using actual explicit user trust ratings, and when the explicit trust data cannot be extracted, our method has a better effect than the other traditional algorithms.
Recently, matrix factorization has produced state-of-the-art results in recommender systems. However, given the typical sparsity of ratings, the often large problem scale, and the large number of free parameters that are often implied, developing robust and efficient models remains a challenge. Previous works rely on dense and/or sparse factor matrices to estimate unavailable user ratings. In this work we develop a new formulation for recommender systems that is based on projective non-negative matrix factorization, but relaxes the non-negativity constraint. Driven by a simple yet instructive intuition, the proposed formulation delivers promising and stable results that depend on a minimal number of parameters. Experiments that we conducted on two popular recommender system datasets demonstrate the efficiency and promise of our proposed method. We make available our code and datasets at https://github.com/christosbampis/PCMF\_release.
In recommender systems based on low-rank factorization of a partially observed user-item matrix, a common phenomenon that plagues many otherwise effective models is the interleaving of good and spurious recommendations in the top-K results. A single spurious recommendation can dramatically impact the perceived quality of a recommender system. Spurious recommendations do not result in serendipitous discoveries but rather cognitive dissonance. In this work, we investigate folding, a major contributing factor to spurious recommendations. Folding refers to the unintentional overlap of disparate groups of users and items in the low-rank embedding vector space, induced by improper handling of missing data. We formally define a metric that quantifies the severity of folding in a trained system, to assist in diagnosing its potential to make inappropriate recommendations. The folding metric complements existing information retrieval metrics that focus on the number of good recommendations and their ranks but ignore the impact of undesired recommendations. We motivate the folding metric definition on synthetic data and evaluate its effectiveness on both synthetic and real world datasets. In studying the relationship between the folding metric and other characteristics of recommender systems, we observe that optimizing for goodness metrics can lead to high folding and thus more spurious recommendations.
Complex systems are prevalent in many fields such as finance, security and industry. A fundamental problem in system management is to perform diagnosis in case of system failure such that the causal anomalies, i.e., root causes, can be identified for system debugging and repair. Recently, invariant network has proven a powerful tool in characterizing complex system behaviors. In an invariant network, a node represents a system component, and an edge indicates a stable interaction between two components. Recent approaches have shown that by modeling fault propagation in the invariant network, causal anomalies can be effectively discovered. Despite their success, the existing methods have a major limitation: they typically assume there is only a single and global fault propagation in the entire network. However, in real-world large-scale complex systems, it's more common for multiple fault propagations to grow simultaneously and locally within different node clusters and jointly define the system failure status. Inspired by this key observation, we propose a two-phase framework to identify and rank causal anomalies. In the first phase, a probabilistic clustering is performed to uncover impaired node clusters in the invariant network. Then, in the second phase, a low-rank network diffusion model is designed to backtrack causal anomalies in different impaired clusters. Extensive experimental results on real-life datasets demonstrate the effectiveness of our method.
Recommendation systems become popular in our daily life. It is well known that the more the release of users' personal data, the better the quality of recommendation. However, such services raise serious privacy concerns for users. In this paper, focusing on matrix factorization-based recommendation systems, we propose the first privacy-preserving matrix factorization using fully homomorphic encryption. On inputs of encrypted users' ratings, our protocol performs matrix factorization over the encrypted data and returns encrypted outputs so that the recommendation system knows nothing on rating values and resulting user/item profiles. It provides a way to obfuscate the number and list of items a user rated without harming the accuracy of recommendation, and additionally protects recommender's tuning parameters for business benefit and allows the recommender to optimize the parameters for quality of service. To overcome performance degradation caused by the use of fully homomorphic encryption, we introduce a novel data structure to perform computations over encrypted vectors, which are essential operations for matrix factorization, through secure 2-party computation in part. With the data structure, the proposed protocol requires dozens of times less computation cost over those of previous works. Our experiments on a personal computer with 3.4 GHz 6-cores 64 GB RAM show that the proposed protocol runs in 1.5 minutes per iteration. It is more efficient than Nikolaenko et al.'s work proposed in CCS 2013, in which it took about 170 minutes on two servers with 1.9 GHz 16-cores 128 GB RAM.
Preparing recommendations for unknown users or such that correctly respond to the short-term needs of a particular user is one of the fundamental problems for e-commerce. Most of the common Recommender Systems assume that user identification must be explicit. In this paper a Session-Aware Recommender System approach is presented where no straightforward user information is required. The recommendation process is based only on user activity within a single session, defined as a sequence of events. This information is incorporated in the recommendation process by explicit context modeling with factorization methods and a novel approach with Recurrent Neural Network (RNN). Compared to the session modeling approach, RNN directly models the dependency of user observed sequential behavior throughout its recurrent structure. The evaluation discusses the results based on sessions from real-life system with ephemeral items (identified only by the set of their attributes) for the task of top-n best recommendations.
We propose an efficient recommendation algorithm, by incorporating the side information of users' trust and distrust social relationships into the learning process of a Joint Non-negative Matrix Factorization technique based on Signed Graphs, namely JNMF-SG. The key idea in this study is to generate clusters based on signed graphs, considering positive and negative weights for the trust and distrust relationships, respectively. Using a spectral clustering approach for signed graphs, the clusters are extracted on condition that users with positive connections should lie close, while users with negative ones should lie far. Then, we propose a Joint Non-negative Matrix factorization framework, by generating the final recommendations, using the user-item and user-cluster associations over the joint factorization. In our experiments with a dataset from a real-world social media platform, we show that we significantly increase the recommendation accuracy, compared to state-of-the-art methods that also consider the trust and distrust side information in matrix factorization.