Biblio
As a cyber attack which leverages social engineering and other sophisticated techniques to steal sensitive information from users, phishing attack has been a critical threat to cyber security for a long time. Although researchers have proposed lots of countermeasures, phishing criminals figure out circumventions eventually since such countermeasures require substantial manual feature engineering and can not detect newly emerging phishing attacks well enough, which makes developing an efficient and effective phishing detection method an urgent need. In this work, we propose a novel phishing website detection approach by detecting the Uniform Resource Locator (URL) of a website, which is proved to be an effective and efficient detection approach. To be specific, our novel capsule-based neural network mainly includes several parallel branches wherein one convolutional layer extracts shallow features from URLs and the subsequent two capsule layers generate accurate feature representations of URLs from the shallow features and discriminate the legitimacy of URLs. The final output of our approach is obtained by averaging the outputs of all branches. Extensive experiments on a validated dataset collected from the Internet demonstrate that our approach can achieve competitive performance against other state-of-the-art detection methods while maintaining a tolerable time overhead.
Steganography is the science of hiding data within data. Either for the good purpose of secret communication or for the bad intention of leaking sensitive confidential data or embedding malicious code or URL. However, many different carrier file formats can be used to hide these data (network, audio, image..etc) but the most common steganography carrier is embedding secret data within images as it is considered to be the best and easiest way to hide all types of files (secret files) within an image using different formats (another image, text, video, virus, URL..etc). To the human eye, the changes in the image appearance with the hidden data can be imperceptible. In fact, images can be more than what we see with our eyes. Therefore, many solutions where proposed to help in detecting these hidden data but each solution have their own strong and weak points either by the limitation of resolving one type of image along with specific hiding technique and or most likely without extracting the hidden data. This paper intends to propose a novel detection approach that will concentrate on detecting any kind of hidden URL in all types of images and extract the hidden URL from the carrier image that used the LSB least significant bit hiding technique.