Visible to the public Biblio

Filters: Keyword is Industrial control network  [Clear All Filters]
2021-01-25
Feng, Y., Sun, G., Liu, Z., Wu, C., Zhu, X., Wang, Z., Wang, B..  2020.  Attack Graph Generation and Visualization for Industrial Control Network. 2020 39th Chinese Control Conference (CCC). :7655–7660.
Attack graph is an effective way to analyze the vulnerabilities for industrial control networks. We develop a vulnerability correlation method and a practical visualization technology for industrial control network. First of all, we give a complete attack graph analysis for industrial control network, which focuses on network model and vulnerability context. Particularly, a practical attack graph algorithm is proposed, including preparing environments and vulnerability classification and correlation. Finally, we implement a three-dimensional interactive attack graph visualization tool. The experimental results show validation and verification of the proposed method.
2020-08-24
Gao, Hongbiao, Li, Jianbin, Cheng, Jingde.  2019.  Industrial Control Network Security Analysis and Decision-Making by Reasoning Method Based on Strong Relevant Logic. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :289–294.
To improve production efficiency, more industrial control systems are connected to IT networks, and more IT technologies are applied to industrial control networks, network security has become an important problem. Industrial control network security analysis and decision-making is a effective method to solve the problem, which can predict risks and support to make decisions before the actual fault of the industrial control network system has not occurred. This paper proposes a security analysis and decision-making method with forward reasoning based on strong relevant logic for industrial control networks. The paper presents a case study in security analysis and decision-making for industrial control networks. The result of the case study shows that the proposed method is effective.
2017-08-22
Shang, Wenli, Cui, Junrong, Wan, Ming, An, Panfeng, Zeng, Peng.  2016.  Modbus Communication Behavior Modeling and SVM Intrusion Detection Method. Proceedings of the 6th International Conference on Communication and Network Security. :80–85.

The security and typical attack behavior of Modbus/TCP industrial network communication protocol are analyzed. The data feature of traffic flow is extracted through the operation mode of the depth analysis abnormal behavior, and the intrusion detection method based on the support vector machine (SVM) is designed. The method analyzes the data characteristics of abnormal communication behavior, and constructs the feature input structure and detection system based on SVM algorithm by using the direct behavior feature selection and abnormal behavior pattern feature construction. The experimental results show that the method can effectively improve the detection rate of abnormal behavior, and enhance the safety protection function of industrial network.