Visible to the public Biblio

Filters: Keyword is NDN  [Clear All Filters]
2018-06-11
Zhang, X., Li, R., Zhao, H..  2017.  Neighbor-aware based forwarding strategy in NDN-MANET. 2017 11th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID). :125–129.

Named Data Networking (NDN) is a future Internet architecture, NDN forwarding strategy is a hot research topic in MANET. At present, there are two categories of forwarding strategies in NDN. One is the blind forwarding(BF), the other is the aware forwarding(AF). Data packet return by the way that one came forwarding strategy(DRF) as one of the BF strategy may fail for the interruptions of the path that are caused by the mobility of nodes. Consumer need to wait until the interest packet times out to request the data packet again. To solve the insufficient of DRF, in this paper a Forwarding Strategy, called FN based on Neighbor-aware is proposed for NDN MANET. The node maintains the neighbor information and the request information of neighbor nodes. In the phase of data packet response, in order to improve request satisfaction rate, node specifies the next hop node; Meanwhile, in order to reduce packet loss rate, node assists the last hop node to forward packet to the specific node. The simulation results show that compared with DRF and greedy forwarding(GF) strategy, FN can improve request satisfaction rate when node density is high.

Zhang, Zhiyi, Yu, Yingdi, Afanasyev, Alexander, Burke, Jeff, Zhang, Lixia.  2017.  NAC: Name-based Access Control in Named Data Networking. Proceedings of the 4th ACM Conference on Information-Centric Networking. :186–187.

As a proposed Internet architecture, Named Data Networking must provide effective security support: data authenticity, confidentiality, and availability. This poster focuses on supporting data confidentiality via encryption. The main challenge is to provide an easy-to-use key management mechanism that ensures only authorized parties are given the access to protected data. We describe the design of name-based access control (NAC) which provides automated key management by developing systematic naming conventions for both data and cryptographic keys. We also discuss an enhanced version of NAC that leverages attribute-based encryption mechanisms (NAC-ABE) to improve the flexibility of data access control and reduce communication, storage, and processing overheads.

Kumar, Naveen, Singh, Ashutosh Kumar, Srivastava, Shashank.  2017.  Evaluating Machine Learning Algorithms for Detection of Interest Flooding Attack in Named Data Networking. Proceedings of the 10th International Conference on Security of Information and Networks. :299–302.

Named Data Networking (NDN) is one of the most promising data-centric networks. NDN is resilient to most of the attacks that are possible in TCP/IP stack. Since NDN has different network architecture than TCP/IP, so it is prone to new types of attack. These attacks are Interest Flooding Attack (IFA), Cache Privacy Attack, Cache Pollution Attack, Content Poisoning Attack, etc. In this paper, we discussed the detection of IFA. First, we model the IFA on linear topology using the ndnSIM and CCNx code base. We have selected most promising feature among all considered features then we applied diïňĂerent machine learning techniques to detect the attack. We have shown that result of attack detection in case of simulation and implementation is almost same. We modeled IFA on DFN topology and compared the results of different machine learning approaches.

2018-02-02
Chowdhury, M., Gawande, A., Wang, L..  2017.  Secure Information Sharing among Autonomous Vehicles in NDN. 2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI). :15–26.

Autonomous vehicles must communicate with each other effectively and securely to make robust decisions. However, today's Internet falls short in supporting efficient data delivery and strong data security, especially in a mobile ad-hoc environment. Named Data Networking (NDN), a new data-centric Internet architecture, provides a better foundation for secure data sharing among autonomous vehicles. We examine two potential threats, false data dissemination and vehicle tracking, in an NDN-based autonomous vehicular network. To detect false data, we propose a four-level hierarchical trust model and the associated naming scheme for vehicular data authentication. Moreover, we address vehicle tracking concerns using a pseudonym scheme to anonymize vehicle names and certificate issuing proxies to further protect vehicle identity. Finally, we implemented and evaluated our AutoNDN application on Raspberry Pi-based mini cars in a wireless environment.

2017-09-05
Freet, David, Agrawal, Rajeev.  2016.  An Overview of Architectural and Security Considerations for Named Data Networking (NDN). Proceedings of the 8th International Conference on Management of Digital EcoSystems. :52–57.

The Internet of Things (IoT) is an emerging architecture that seeks to interconnect all of the "things" we use on a daily basis. Whereas the Internet originated as a way to connect traditional computing devices in order to share information, IoT includes everything from automobiles to appliances to buildings. As networks and devices become more diverse and disparate in their communication methods and interfaces, traditional host-to host technologies such as Internet Protocol (IP) are challenged to provide the level of data exchange and security needed to operate in this new network paradigm. Named Data Networking (NDN) is a developing Internet architecture that can help implement the IoT paradigm in a more efficient and secure manner. This paper introduces the NDN architecture in comparison to the traditional IP-based architecture and discusses several security concepts pertaining to NDN that make this a powerful technology for implementing the Internet of Things.