Biblio
In the paper, an intrusion detection system to safeguard computer software is proposed. The detection is based on negative selection algorithm, inspired by the human immunity mechanism. It is composed of two stages, generation of receptors and anomaly detection. Experimental results of the proposed system are presented, analyzed, and concluded.
In order to solve the problems of the existing speech content authentication algorithm, such as single format, ununiversal algorithm, low security, low accuracy of tamper detection and location in small-scale, a multi-format speech perception hashing based on time-frequency parameter fusion of energy zero ratio and frequency band bariance is proposed. Firstly, the algorithm preprocesses the processed speech signal and calculates the short-time logarithmic energy, zero-crossing rate and frequency band variance of each speech fragment. Then calculate the energy to zero ratio of each frame, perform time- frequency parameter fusion on time-frequency features by mean filtering, and the time-frequency parameters are constructed by difference hashing method. Finally, the hash sequence is scrambled with equal length by logistic chaotic map, so as to improve the security of the hash sequence in the transmission process. Experiments show that the proposed algorithm is robustness, discrimination and key dependent.
Attacks by Jamming on wireless communication network can provoke Denial of Services. According to the communication system which is affected, the consequences can be more or less critical. In this paper, we propose to develop an algorithm which could be implemented at the reception stage of a communication terminal in order to detect the presence of jamming signals. The work is performed on Wi-Fi communication signals and demonstrates the necessity to have a specific signal processing at the reception stage to be able to detect the presence of jamming signals.
In this paper, we propose a robust Nash strategy for a class of uncertain Markov jump delay stochastic systems (UMJDSSs) via static output feedback (SOF). After establishing the extended bounded real lemma for UMJDSS, the conditions for the existence of a robust Nash strategy set are determined by means of cross coupled stochastic matrix inequalities (CCSMIs). In order to solve the SOF problem, an heuristic algorithm is developed based on the algebraic equations and the linear matrix inequalities (LMIs). In particular, it is shown that robust convergence is guaranteed under a new convergence condition. Finally, a practical numerical example based on the congestion control for active queue management is provided to demonstrate the reliability and usefulness of the proposed design scheme.
The exponential growth rate of malware causes significant security concern in this digital era to computer users, private and government organizations. Traditional malware detection methods employ static and dynamic analysis, which are ineffective in identifying unknown malware. Malware authors develop new malware by using polymorphic and evasion techniques on existing malware and escape detection. Newly arriving malware are variants of existing malware and their patterns can be analyzed using the vision-based method. Malware patterns are visualized as images and their features are characterized. The alternative generation of class vectors and feature vectors using ensemble forests in multiple sequential layers is performed for classifying malware. This paper proposes a hybrid stacked multilayered ensembling approach which is robust and efficient than deep learning models. The proposed model outperforms the machine learning and deep learning models with an accuracy of 98.91%. The proposed system works well for small-scale and large-scale data since its adaptive nature of setting parameters (number of sequential levels) automatically. It is computationally efficient in terms of resources and time. The method uses very fewer hyper-parameters compared to deep neural networks.
With rapid growth of network size and complexity, network defenders are facing more challenges in protecting networked computers and other devices from acute attacks. Traffic visualization is an essential element in an anomaly detection system for visual observations and detection of distributed DoS attacks. This paper presents an interactive visualization system called TVis, proposed to detect both low-rate and highrate DDoS attacks using Heron's triangle-area mapping. TVis allows network defenders to identify and investigate anomalies in internal and external network traffic at both online and offline modes. We model the network traffic as an undirected graph and compute triangle-area map based on incidences at each vertex for each 5 seconds time window. The system triggers an alarm iff the system finds an area of the mapped triangle beyond the dynamic threshold. TVis performs well for both low-rate and high-rate DDoS detection in comparison to its competitors.
Continuous and adaptive learning is an effective learning approach when dealing with highly dynamic and changing scenarios, where concept drift often happens. In a continuous, stream or adaptive learning setup, new measurements arrive continuously and there are no boundaries for learning, meaning that the learning model has to decide how and when to (re)learn from these new data constantly. We address the problem of adaptive and continual learning for network security, building dynamic models to detect network attacks in real network traffic. The combination of fast and big network measurements data with the re-training paradigm of adaptive learning imposes complex challenges in terms of data processing speed, which we tackle by relying on big data platforms for parallel stream processing. We build and benchmark different adaptive learning models on top of a novel big data analytics platform for network traffic monitoring and analysis tasks, and show that high speed-up computations (as high as × 6) can be achieved by parallelizing off-the-shelf stream learning approaches.
Bi-dimensional empirical mode decomposition can decompose the source image into several Bi-dimensional Intrinsic Mode Functions. In the process of image decomposition, interpolation is needed and the upper and lower envelopes will be drawn. However, these interpolations and the drawings of upper and lower envelopes require a lot of computation time and manual screening. This paper proposes a simple but effective method that can maintain the characteristics of the original BEMD method, and the Hermite interpolation reconstruction method is used to replace the surface interpolation, and the variable neighborhood window method is used to replace the fixed neighborhood window method. We call it fast bi-dimensional empirical mode decomposition of the variable neighborhood window method based on research characteristics, and we finally complete the image fusion. The empirical analysis shows that this method can overcome the shortcomings that the source image features and details information of BIMF component decomposed from the original BEMD method are not rich enough, and reduce the calculation time, and the fusion quality is better.
The era of information technology has, unfortunately, contributed to the tremendous rise in the number of criminal activities. However, digital artifacts can be utilized in convicting cybercriminal and exposing their activities. The digital forensics science concerns about all aspects related to cybercrimes. It seeks digital evidence by following standard methodologies to be admitted in court rooms. This paper concerns about memory forensics for the unique artifacts it holds. Memory contains information about the current state of systems and applications. Moreover, an application's data explains how a criminal has been interacting the application just before the memory is acquired. Memory forensics at the application level is currently random and cumbersome. Targeting specific applications is what forensic researchers and practitioner are currently striving to provide. This paper suggests a general solution to investigate any application. Our solution aims to utilize an application's data structures and variables' information in the investigation process. This is because an application's data has to be stored and retrieved in the means of variables. Data structures and variables' information can be generated by compilers for debugging purposes. We show that an application's information is a valuable resource to the investigator.
Named Data Network (NDN) is an alternative to host-centric networking exemplified by today's Internet. One key feature of NDN is in-network caching that reduces access delay and query overhead by caching popular contents at the source as well as at a few other nodes. Unfortunately, in-network caching suffers various privacy risks by different attacks, one of which is termed timing attack. This is an attack to infer whether a consumer has recently requested certain contents based on the time difference between the delivery time of those contents that are currently cached and those that are not cached. In order to prevent the privacy leakage and resist such kind of attacks, we propose a detection scheme by adopting Long Short-term Memory (LSTM) model. Based on the four input features of LSTM, cache hit ratio, average request interval, request frequency, and types of requested contents, we timely capture more important eigenvalues by dividing a constant time window size into a few small slices in order to detect timing attacks accurately. We have performed extensive simulations to compare our scheme with several other state-of-the-art schemes in classification accuracy, detection ratio, false alarm ratio, and F-measure. It has been shown that our scheme possesses a better performance in all cases studied.