Biblio
In this paper, the mathematical framework of behavioral system will be applied to detect the cyber-attack on the networked control system which is used to control the remotely operated underwater vehicle ROV. The Intelligent Generalized Predictive Controller IGPC is used to control the ROV. The IGPC is designed with fault-tolerant ability. In consequence of the used fault accommodation technique, the proposed cyber-attacks detector is able to clearly detect the presence of attacker control signal and to distinguish between the effects of the attacker signal and fault on the plant side. The test result of the suggested method demonstrates that it can be considerably used for detection of the cyber-attack.
Real-time localization of mobile target has been attracted much attention in recent years. With the limitation of unavailable GPS signals in the complex environments, wireless sensor networks can be applied to real-time locate and track the mobile targets in this paper. The multi wireless signals are used to weaken the effect of abnormal wireless signals in some areas. To verify the real-time localization performance for mobile targets, experiments and analyses are implemented. The results of the experiments reflect that the proposed location method can provide experimental basis for the applications, such as the garage, shopping center, underwater, etc.
This paper combines FMEA and n2 approaches in order to create a methodology to determine risks associated with the components of an underwater system. This methodology is based on defining the risk level related to each one of the components and interfaces that belong to a complex underwater system. As far as the authors know, this approach has not been reported before. The resulting information from the mentioned procedures is combined to find the system's critical elements and interfaces that are most affected by each failure mode. Finally, a calculation is performed to determine the severity level of each failure mode based on the system's critical elements.
On account of large and inconsistent propagation delays during transmission in Underwater Wireless Sensor Networks (UWSNs), wormholes bring more destructive than many attacks to localization applications. As a localization algorithm, DV-hop is classic but without secure scheme. A secure localization algorithm for UWSNs- RDV-HOP is brought out, which is based on reputation values and the constraints of propagation distance in UWSNs. In RDV-HOP, the anchor nodes evaluate the reputation of paths to other anchor nodes and broadcast these reputation values to the network. Unknown nodes select credible anchors nodes with high reputation to locate. We analyze the influence of the location accuracy with some parameters in the simulation experiments. The results show that the proposed algorithm can reduce the location error under the wormhole attack.
In this paper, we propose a theoretical framework to investigate the eavesdropping behavior in underwater acoustic sensor networks. In particular, we quantify the eavesdropping activities by the eavesdropping probability. Our derived results show that the eavesdropping probability heavily depends on acoustic signal frequency, underwater acoustic channel characteristics (such as spreading factor and wind speed) and different hydrophones (such as isotropic hydrophones and array hydrophones). Simulation results have further validate the effectiveness and the accuracy of our proposed model.
Due to the trend of under-ocean exploration, realtime monitoring or long-term surveillance of the under-ocean environment, e.g., real-time monitoring for under-ocean oil drilling, is imperative. Underwater wireless sensor networks could provide an optimal option, and have recently attracted intensive attention from researchers. Nevertheless, terrestrial wireless sensor networks (WSNs) have been well investigated and solved by many approaches that rely on the electromagnetic/optical transmission techniques. Deploying an applicable underwater wireless sensor network is still a big challenge. Due to critical conditions of the underwater environment (e.g., high pressure, high salinity, limited energy etc), the cost of the underwater sensor is significant. The dense sensor deployment is not applicable in the underwater condition. Therefore, Autonomous Underwater Vehicle (AUV) becomes an alternative option for implementing underwater surveillance and target detection. In this article, we present a framework to theoretically analyze the target detection probability in the underwater environment by using AUVs. The experimental results further verify our theoretical results.
Multiple-input multiple-output (MIMO) techniques have been the subject of increased attention for underwater acoustic communication for its ability to significantly improve the channel capabilities. Recently, an under-ice MIMO acoustic communication experiment was conducted in shallow water which differs from previous works in that the water column was covered by about 40 centimeters thick sea ice. In this experiment, high frequency MIMO signals centered at 10 kHz were transmitted from a two-element source array to a four-element vertical receive array at 1km range. The unique under-ice acoustic propagation environment in shallow water seems naturally separate data streams from different transducers, but there is still co-channel interference. Time reversal followed by a single channel decision feedback equalizer is used in this paper to compensate for the inter-symbol interference and co-channel interference. It is demonstrated that this simple receiver scheme is good enough to realize robust performance using fewer hydrophones (i.e. 2) without the explicit use of complex co-channel interference cancelation algorithms such as parallel interference cancelation or serial interference cancelation. Two channel estimation algorithms based on least square and least mean square are also studied for MIMO communications in this paper and their performance are compared using experimental data.