Yu, Xiujun, Chen, Huifang, Xie, Lei.
2021.
A Secure Communication Protocol between Sensor Nodes and Sink Node in Underwater Acoustic Sensor Networks. 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :279—283.
Underwater acoustic sensor networks (UASNs) have been receiving more and more attention due to their wide applications and the marine data collection is one of the important applications of UASNs. However, the openness and unreliability of underwater acoustic communication links and the easy capture of underwater wireless devices make UASNs vulnerable to various attacks. On the other hand, due to the limited resources of underwater acoustic network nodes, the high bit error rates, large and variable propagation delays, and low bandwidth of acoustic channels, many mature security mechanisms in terrestrial wireless sensor networks cannot be applied in the underwater environment [1]. In this paper, a secure communication protocol for marine data collection was proposed to ensure the confidentiality and data integrity of communication between under sensor nodes and the sink node in UASNs.
Peng, Zheng, Han, Xu, Ye, Yun.
2021.
Enhancing Underwater Sensor Network Security with Coordinated Communications. ICC 2021 - IEEE International Conference on Communications. :1—6.
In recent years, the underwater sensor network has emerged as a promising solution for a wide range of marine applications. The underwater wireless sensors are usually designed to operate in open water, where eavesdropping can be a serious issue. Existing work either utilizes cryptography that is computationally intensive or requires expensive hardware. In this paper, we present a coordinated multi-point transmission based protocol to improve network security. The proposed protocol dynamically pairs sensors for coordinated communications to undermine the eavesdroppers’ capability. Our preliminary results indicate that the underwater sensor network security can be enhanced using the proposed method, especially in applications where cryptography or special hardware are not suitable.
Kalyani, Muppalla, Park, Soo-Hyun.
2021.
Ontology based routing path selection mechanism for underwater Internet of Things. 2021 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia). :1—5.
Based on the success of terrestrial Internet of Things (IoT), research has started on Underwater IoT (UIoT). The UIoT describes global network of connected underwater things that interact with water environment and communicate with terrestrial network through the underwater communication technologies. For UIoT device, it is important to choose the channel before transmission. This paper deals with UIoT communication technologies and ontology based path selection mechanism for UIoT.
Palisetti, Sanjana, Chandavarkar, B. R., Gadagkar, Akhilraj V..
2021.
Intrusion Detection of Sinkhole Attack in Underwater Acoustic Sensor Networks. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :1—7.
Underwater networks have the potential to allow previously unexplored applications as well as improve our ability to observe and forecast the ocean. Underwater acoustic sensor networks (UASNs) are often deployed in unprecedented and hostile waters and face many security threats. Applications based on UASNs such as coastal defense, pollution monitoring, assisted navigation to name a few, require secure communication. A new set of communication protocols and cooperative coordination algorithms have been proposed to enable collaborative monitoring tasks. However, such protocols overlook security as a key performance indicator. Spoofing, altering, or replaying routing information can affect the entire network, making UASN vulnerable to routing attacks such as selective forwarding, sinkhole attack, Sybil attack, acknowledgement spoofing and HELLO flood attack. The lack of security against such threats is startling if it is observed that security is indeed an important requirement in many emerging civilian and military applications. In this work, the sinkhole attack prevalent among UASNs is looked at and discuss mitigation approaches that can feasibly be implemented in UnetStack3.
Liu, Yao, Li, Luyu, Fan, Rong, Ma, Suya, Liu, Xuan, Su, Yishan.
2021.
A Physical Layer Security Mechanism based on Cooperative Jamming in Underwater Acoustic Sensor Networks. 2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops). :239—243.
Due to broadcast nature of acoustic signal, underwater acoustic sensor networks face security challenge. In the paper, we propose a physical layer security transmission scheme with cooperative jamming. The proposed scheme takes advantage of the long propagation delay of the underwater acoustic channel to interfere with eavesdropper without affecting the reception of intended users. The results of both simulation and field experiment show that the proposed mechanism can improve the secrecy capacity of the network and effectively jam eavesdropper.
Qi, Xingyue, Lin, Chuan, Wang, Zhaohui, Du, Jiaxin, Han, Guangjie.
2021.
Proactive Alarming-enabled Path Planning for Multi-AUV-based Underwater IoT Systems. 2021 Computing, Communications and IoT Applications (ComComAp). :263—267.
The ongoing expansion of underwater Internet of Things techniques promote diverse categories of maritime intelligent systems, e.g., Underwater Acoustic Sensor Networks (UASNs), Underwater Wireless Networks (UWNs), especially multiple Autonomous Underwater Vehicle (AUV) based UWNs have produced many civil and military applications. To enhance the network management and scalability, in this paper, the technique of Software-Defined Networking (SDN) technique is introduced, leading to the paradigm of Software-Defined multi-AUV-based UWNs (SD-UWNs). With SD-UWNs, the network architecture is divided into three functional layers: data layer, control layer, and application layer, and the network administration is re-defined by a framework of software-defined beacon. To manage the network, a control model based on artificial potential field and network topology theory is constructed. On account of the efficient data sharing ability of SD-UWNs, a proactive alarming-enabled path planning scheme is proposed, wherein all potential categories of obstacle avoidance scenes are taken into account. Evaluation results indicate that the proposed SD-UWN is more efficient in scheduling the cooperative network function than the traditional approaches and can secure exact path planning.
Gai, Lei, Li, Wendong, Wei, Yu, Yu, Yonghe, Yang, Yang, Zhang, Xinjian, Zhu, Qiming, Wang, Guoyu, Gu, Yongjian.
2021.
Secure underwater optical communications based on quantum technologies. 2021 19th International Conference on Optical Communications and Networks (ICOCN). :1—3.
Underwater wireless optical communications are studied through single photon detection, photon states modulation and quantum key encryption. These studies will promote the development of optical communication applications in underwater vehicles and underwater sensor networks.
Diamant, Roee, Casari, Paolo, Tomasin, Stefano.
2021.
Topology-based Secret Key Generation for Underwater Acoustic Networks. 2021 Fifth Underwater Communications and Networking Conference (UComms). :1—5.
We propose a method to let a source and a destination agree on a key that remains secret to a potential eavesdropper in an underwater acoustic network (UWAN). We generate the key from the propagation delay measured over a set of multihop routes: this harvests the randomness in the UWAN topology and turns the slow sound propagation in the water into an advantage for the key agreement protocol. Our scheme relies on a route discovery handshake. During this process, all intermediate relays accumulate message processing delays, so that both the source and the destination can compute the actual propagation delays along each route, and map this information to a string of bits. Finally, via a secret key agreement from the information-theoretic security framework, we obtain an equal set of bits at the source and destination, which is provably secret to a potential eavesdropper located away from both nodes. Our simulation results show that, even for small UWANs of 4 nodes, we obtain 11 secret bits per explored topology, and that the protocol is insensitive to an average node speed of up to 0.5 m/s.
Hariyale, Ashish, Thawre, Aakriti, Chandavarkar, B. R..
2021.
Mitigating unsecured data forwarding related attack of underwater sensor network. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :1—5.
To improve communication underwater, the underwater sensor networks (UWSN) provide gains for many different underwater applications, like Underwater Data-centers, Aquatic Monitoring, Tsunami Monitoring Systems, Aquatic Monitoring, Underwater Oil Field Discovery, Submarine Target Localization, Surveilling Water Territory of the Country via UWSN, Submarine Target Localization and many more. underwater applications are dependent on secure data communication in an underwater environment, so Data transmission in Underwater Sensor Network is a need of the future. Underwater data transmission itself is a big challenge due to various limitations of underwater communication mediums like lower bandwidth, multipath effect, path loss, propagation delay, noise, Doppler spread, and so on. These challenges make the underwater networks one of the most vulnerable networks for many different security attacks like sinkhole, spoofing, wormhole, misdirection, etc. It causes packets unable to be delivered to the destination, and even worse forward them to malicious nodes. A compromised node, which may be a router, intercepts packets going through it, and selectively drops them or can perform some malicious activity. This paper presents a solution to Mitigate unsecured data forwarding related attacks of an underwater sensor network, our solution uses a pre-shared key to secure communication and hashing algorithm to maintain the integrity of stored locations at head node and demonstration of attack and its mitigation done on Unetstack software.
Junqing, Zhang, Gangqiang, Zhang, Junkai, Liu.
2021.
Wormhole Attack Detecting in Underwater Acoustic Communication Networks. 2021 OES China Ocean Acoustics (COA). :647—650.
Because the underwater acoustic communication network transmits data through the underwater acoustic wireless link, the Underwater Acoustic Communication Network is easy to suffer from the external artificial interference, in this paper, the detection algorithm of wormhole attack in Underwater Acoustic Communication Network based on Azimuth measurement technology is studied. The existence of wormhole attack is judged by Azimuth or distance outliers, and the security performance of underwater acoustic communication network is evaluated. The influence of different azimuth direction errors on the detection probability of wormhole attack is analyzed by simulation. The simulation results show that this method has a good detection effect for Underwater Acoustic Communication Network.