Biblio
This exploratory investigation aims to discuss current status and challenges, especially in aspect of security and trust problems, of digital supply chain management system with applying some advanced information technologies, such as Internet of Things, cloud computing and blockchain, for improving various system performance and properties, i.e. transparency, visibility, accountability, traceability and reliability. This paper introduces the general histories and definitions, in terms of information science, of the supply chain and relevant technologies which have been applied or are potential to be applied on supply chain with purpose of lowering cost, facilitating its security and convenience. It provides a comprehensive review of current relative research work and industrial cases from several famous companies. It also illustrates requirements or performance of digital supply chain system, security management and trust issues. Finally, this paper concludes several potential or existing security issues and challenges which supply chain management is facing.
Efficient management and control of modern and next-gen networks is of paramount importance as networks have to maintain highly reliable service quality whilst supporting rapid growth in traffic demand and new application services. Rapid mitigation of network service degradations is a key factor in delivering high service quality. Automation is vital to achieving rapid mitigation of issues, particularly at the network edge where the scale and diversity is the greatest. This automation involves the rapid detection, localization and (where possible) repair of service-impacting faults and performance impairments. However, the most significant challenge here is knowing what events to detect, how to correlate events to localize an issue and what mitigation actions should be performed in response to the identified issues. These are defined as policies to systems such as ECOMP. In this paper, we present AESOP, a data-driven intelligent system to facilitate automatic learning of policies and rules for triggering remedial actions in networks. AESOP combines best operational practices (domain knowledge) with a variety of measurement data to learn and validate operational policies to mitigate service issues in networks. AESOP's design addresses the following key challenges: (i) learning from high-dimensional noisy data, (ii) capturing multiple fault models, (iii) modeling the high service-cost of false positives, and (iv) accounting for the evolving network infrastructure. We present the design of our system and show results from our ongoing experiments to show the effectiveness of our policy leaning framework.
When a person gets to a door and wants to get in, what do they do? They knock. In our system, the user's specific knock pattern authenticates their identity, and opens the door for them. The system empowers people's intuitive actions and responses to affect the world around them in a new way. We leverage IOT, and physical computing to make more technology feel like less. From there, the system of a knock based entrance creates affordances in social interaction for shared spaces wherein ownership fluidity and accessibility needs to be balanced with security
A low power consumption three-position four-way direct drive control valve based on hybrid excited linear actuator (HELA-DDCV) was provided to meet the requirements of the response time and the power consumption. A coupling system numerical model was established and validated by experiments, which is based on Matlab/Simulink, from four points of view: electric circuit, electromagnetic field, mechanism and fluid mechanics. A dual-closed-loop PI control strategy for both spool displacement and coil current is adopted, and the process of displacement response was analyzed as well as the power consumption performances. The results show that the prototype valve spool displacement response time is less than 9.6ms. Furthermore, the holding current is less than 30% of the peak current in working process, which reduces the power consumption effectively and improves the system stability. Note that the holding current can be eliminated when the spool working at the ends of stroke, and 0.26 J energy is needed in once action independent of the working time.
Identity masking methods have been developed in recent years for use in multiple applications aimed at protecting privacy. There is only limited work, however, targeted at evaluating effectiveness of methods-with only a handful of studies testing identity masking effectiveness for human perceivers. Here, we employed human participants to evaluate identity masking algorithms on video data of drivers, which contains subtle movements of the face and head. We evaluated the effectiveness of the “personalized supervised bilinear regression method for Facial Action Transfer (FAT)” de-identification algorithm. We also evaluated an edge-detection filter, as an alternate “fill-in” method when face tracking failed due to abrupt or fast head motions. Our primary goal was to develop methods for humanbased evaluation of the effectiveness of identity masking. To this end, we designed and conducted two experiments to address the effectiveness of masking in preventing recognition and in preserving action perception. 1- How effective is an identity masking algorithm?We conducted a face recognition experiment and employed Signal Detection Theory (SDT) to measure human accuracy and decision bias. The accuracy results show that both masks (FAT mask and edgedetection) are effective, but that neither completely eliminated recognition. However, the decision bias data suggest that both masks altered the participants' response strategy and made them less likely to affirm identity. 2- How effectively does the algorithm preserve actions? We conducted two experiments on facial behavior annotation. Results showed that masking had a negative effect on annotation accuracy for the majority of actions, with differences across action types. Notably, the FAT mask preserved actions better than the edge-detection mask. To our knowledge, this is the first study to evaluate a deidentification method aimed at preserving facial ac- ions employing human evaluators in a laboratory setting.
In this proposed method, the traditional elevators are upgraded in such a way that any alarming situation in the elevator can be detected and then sent to a main center where further action can be taken accordingly. Different emergency situation can be handled by implementing the system. Smart elevator system works by installing different modules inside the elevator such as speed sensors which will detect speed variations occurring above or below a certain threshold of elevator speed. The smart elevator system installed within the elevator sends a message to the emergency response center and sends an automated call as well. The smart system also includes an emotion detection algorithm which will detect emotions of the individual based on their expression in the elevator. The smart system also has a whisper detection system as well to know if someone stuck inside the elevator is alive during any hazardous situation. A broadcast signal is used as a check in the elevator system to evaluate if every part of the system is in stable state. Proposed system can completely replace the current elevator systems and become part of smart homes.
We present a novel multimodal fusion model for affective content analysis, combining visual, audio and deep visual-sentiment descriptors from the media content with automated facial action measurements from naturalistic responses to the media. We collected a dataset of 48,867 facial responses to 384 media clips and extracted a rich feature set from the facial responses and media content. The stimulus videos were validated to be informative, inspiring, persuasive, sentimental or amusing. By combining the features, we were able to obtain a classification accuracy of 63% (weighted F1-score: 0.62) for a five-class task. This was a significant improvement over using the media content features alone. By analyzing the feature sets independently, we found that states of informed and persuaded were difficult to differentiate from facial responses alone due to the presence of similar sets of action units in each state (AU 2 occurring frequently in both cases). Facial actions were beneficial in differentiating between amused and informed states whereas media content features alone performed less well due to similarities in the visual and audio make up of the content. We highlight examples of content and reactions from each class. This is the first affective content analysis based on reactions of 10,000s of people.
Crowd management in urban settings has mostly relied on either classical, non-automated mechanisms or spontaneous notifications/alerts through social networks. Such management techniques are heavily marred by lack of comprehensive control, especially in terms of averting risks in a manner that ensures crowd safety and enables prompt emergency response. In this paper, we propose a Markov Decision Process Scheme MDP to realize a smart infrastructure that is directly aimed at crowd management. A key emphasis of the scheme is a robust and reliable scalability that provides sufficient flexibility to manage a mixed crowd (i.e., pedestrian, cyclers, manned vehicles and unmanned vehicles). The infrastructure also spans various population settings (e.g., roads, buildings, game arenas, etc.). To realize a reliable and scalable crowd management scheme, the classical MDP is decomposed into Local MDPs with smaller action-state spaces. Preliminarily results show that the MDP decomposition can reduce the system global cost and facilitate fast convergence to local near-optimal solution for each L-MDP.
This paper presents the results of research and simulation of feature automated control of a hysteretic object and the difference between automated control and automatic control. The main feature of automatic control is in the fact that the control loop contains human being as a regulator with its limited response speed. The human reaction can be described as integrating link. The hysteretic object characteristic is switching from one state to another. This is followed by a transient process from one to another characteristic. For this reason, it is very difficult to keep the object in a desired state. Automatic operation ensures fast switching of the feedback signal that produces such a mode, which in many ways is similar to the sliding mode. In the sliding mode control signal abruptly switches from maximum to minimum and vice versa. The average value provides the necessary action to the object. Theoretical analysis and simulation show that the use of the maximum value of the control signal is not required. It is sufficient that the switching oscillation amplitude is such that the output signal varies with the movement of the object along both branches with hysteretic characteristics in the fastest cycle. The average output value in this case corresponds to the prescribed value of the control task. With automated control, the human response can be approximately modeled by integrating regulator. In this case the amplitude fluctuation could be excessively high and the frequency could be excessively low. The simulation showed that creating an artificial additional fluctuation in the control signal makes possible to provide a reduction in the amplitude and the resulting increase in the frequency of oscillation near to the prescribed value. This should be evaluated as a way to improve the quality of automated control with the helps of human being. The paper presents some practical examples of the examined method.
Mission assurance requires effective, near-real time defensive cyber operations to appropriately respond to cyber attacks, without having a significant impact on operations. The ability to rapidly compute, prioritize and execute network-based courses of action (CoAs) relies on accurate situational awareness and mission-context information. Although diverse solutions exist for automatically collecting and analysing infrastructure data, few deliver automated analysis and implementation of network-based CoAs in the context of the ongoing mission. In addition, such processes can be operatorintensive and available tools tend to be specific to a set of common data sources and network responses. To address these issues, Defence Research and Development Canada (DRDC) is leading the development of the Automated Computer Network Defence (ARMOUR) technology demonstrator and cyber defence science and technology (S&T) platform. ARMOUR integrates new and existing off-the-shelf capabilities to provide enhanced decision support and to automate many of the tasks currently executed manually by network operators. This paper describes the cyber defence integration framework, situational awareness, and automated mission-oriented decision support that ARMOUR provides.
In a continually evolving cyber-threat landscape, the detection and prevention of cyber attacks has become a complex task. Technological developments have led organisations to digitise the majority of their operations. This practice, however, has its perils, since cybespace offers a new attack-surface. Institutions which are tasked to protect organisations from these threats utilise mainly network data and their incident response strategy remains oblivious to the needs of the organisation when it comes to protecting operational aspects. This paper presents a system able to combine threat intelligence data, attack-trend data and organisational data (along with other data sources available) in order to achieve automated network-defence actions. Our approach combines machine learning, visual analytics and information from business processes to guide through a decision-making process for a Security Operation Centre environment. We test our system on two synthetic scenarios and show that correlating network data with non-network data for automated network defences is possible and worth investigating further.
Web Service Architecture gives a compatible and scalable structure for web service interactions with performance, responsiveness, reliability and security to make a quality of software design. Systematic quantitative approaches have been discussed for designing and developing software systems that meet performance objectives. Many companies have successfully applied these techniques in different applications to achieve better performance in terms of financial, customer satisfaction, and other benefits. This paper describes the architecture, design, implementation, integration testing, performance and maintenance of new applications. The most successful best practices used in world class organizations are discussed. This will help the application, component, and software system designers to develop web applications and fine tune the existing methods in line with the best practices. In business process automation, many standard practices and technologies have been used to model and execute business processes. The emerging technology is web applications technology which provides a great flexibility for development of interoperable environment services. In this paper we propose a Case study of Automatic Gas Booking system, a business process development strategy and best practices used in development of software components used in web applications. The classification of QWS dataset with 2507 records, service invocations, integration and security for web applications have been discussed.
Defending computer networks from ongoing security incidents is a key requirement to ensure service continuity. Handling incidents in real-time is a complex process consisting of the three single steps: intrusion detection, alert processing and intrusion response. For useful and automated incident handling a comprehensive view on the process and tightly interleaved single steps are required. Existing solutions for incident handling merely focus on a single step leaving the other steps completely aside. Incompatible and encapsulated partial solutions are the consequence. This paper proposes an incident handling systems (IHS) based on a novel execution model that allows interleaving and collaborative interaction between the incident handling steps realized using the Blackboard Pattern. Our holistic information model lays the foundation for a conflict-free collaboration. The incident handling steps are further segmented into exchangeable functional blocks distributed across the network. To show the applicability of our approach, typical use cases for incident handling systems are identified and tested with our implementation.
The IoT will host a large number of co-existing cyber-physical applications. Continuous change, application interference, environment dynamics and uncertainty lead to complex effects which must be controlled to give performance and application guarantees. Application and platform self-configuration and self-awareness are one paradigm to approach this challenge. They can leverage context knowledge to control platform and application functions and their interaction. They could play a dominant role in large scale cyber-physical systems and systems-of-systems, simply because no person can oversee the whole system functionality and dynamics. IoT adds a new dimension because Internet based services will increasingly be used in such system functions. Autonomous vehicles accessing cloud services for efficiency and comfort as well as to reach the required level of safety and security are an example. Such vehicle platforms will communicate with a service infrastructure that must be reliable and highly responsive. Automated continuous self-configuration of data storage might be a good basis for such services up to the point where the different self-x strategies might affect each other, in a positive or negative form. This paper contains three contributions from different domains representing the current status of self-aware systems as they will meet in the Internet-of-Things and closes with a short discussion of upcoming challenges.
Physical unclonable functions (PUFs) utilize manufacturing ariations of circuit elements to produce unpredictable response to any challenge vector. The attack on PUF aims to predict the PUF response to all challenge vectors while only a small number of challenge-response pairs (CRPs) are known. The target PUFs in this paper include the Arbiter PUF (ArbPUF) and the Memristor Crossbar PUF (MXbarPUF). The manufacturing variations of the circuit elements in the targeted PUF can be characterized by a weight vector. An optimization-theoretic attack on the target PUFs is proposed. The feasible space for a PUF's weight vector is described by a convex polytope confined by the known CRPs. The centroid of the polytope is chosen as the estimate of the actual weight vector, while new CRPs are adaptively added into the original set of known CRPs. The linear behavior of both ArbPUF and MXbarPUF is proven which ensures that the feasible space for their weight vectors is convex. Simulation shows that our approach needs 71.4% fewer known CRPs and 86.5% less time than the state-of-the-art machine learning based approach.