Biblio
Internet of Things (IoT) is experiencing significant growth in the safety-critical applications which have caused new security challenges. These devices are becoming targets for different types of physical attacks, which are exacerbated by their diversity and accessibility. Therefore, there is a strict necessity to support embedded software developers to identify and remediate the vulnerabilities and create resilient applications against such attacks. In this paper, we propose a hardware security vulnerability assessment based on fault injection of an embedded application. In our security assessment, we apply a fault injection attack by using our clock glitch generator on a critical medical IoT device. Furthermore, we analyze the potential risks of ignoring these attacks in this embedded application. The results will inform the embedded software developers of various security risks and the required steps to improve the security of similar MCU-based applications. Our hardware security assessment approach is easy to apply and can lead to secure embedded IoT applications against fault attacks.
Elliptical curve cryptography (ECC) is being used more and more in public key cryptosystems. Its main advantage is that, at a given security level, key sizes are much smaller compared to classical asymmetric cryptosystems like RSA. Smaller keys imply less power consumption, less cryptographic computation and require less memory. Besides performance, security is another major problem in embedded devices. Cryptosystems, like ECC, that are considered mathematically secure, are not necessarily considered safe when implemented in practice. An attacker can monitor these interactions in order to mount attacks called fault attacks. A number of countermeasures have been developed to protect Montgomery Scalar Multiplication algorithm against fault attacks. In this work, we proposed an efficient countermeasure premised on duplication scheme and the scrambling technique for Montgomery Scalar Multiplication algorithm against fault attacks. Our approach is simple and easy to hardware implementation. In addition, we perform injection-based error simulations and demonstrate that the error coverage is about 99.996%.
Model compression is considered to be an effective way to reduce the implementation cost of deep neural networks (DNNs) while maintaining the inference accuracy. Many recent studies have developed efficient model compression algorithms and implementations in accelerators on various devices. Protecting integrity of DNN inference against fault attacks is important for diverse deep learning enabled applications. However, there has been little research investigating the fault resilience of DNNs and the impact of model compression on fault tolerance. In this work, we consider faults on different data types and develop a simulation framework for understanding the fault resiliency of compressed DNN models as compared to uncompressed models. We perform our experiments on two common DNNs, LeNet-5 and VGG16, and evaluate their fault resiliency with different types of compression. The results show that binary quantization can effectively increase the fault resilience of DNN models by 10000x for both LeNet5 and VGG16. Finally, we propose software and hardware mitigation techniques to increase the fault resiliency of DNN models.
Hardware Trojan Horses and active fault attacks are a threat to the safety and security of electronic systems. By such manipulations, an attacker can extract sensitive information or disturb the functionality of a device. Therefore, several protections against malicious inclusions have been devised in recent years. A prominent technique to detect abnormal behavior in the field is run-time verification. It relies on dedicated monitoring circuits and on verification rules generated from a set of temporal properties. An important question when dealing with such protections is the effectiveness of the protection against unknown attacks. In this paper, we present a methodology based on automatic generation of monitoring and formal verification techniques that can be used to validate and analyze the quality of a set of temporal properties when used as protection against generic attackers of variable strengths.
Reading and writing memory are, besides computation, the most common operations a processor performs. The correctness of these operations is therefore essential for the proper execution of any program. However, as soon as fault attacks are considered, assuming that the hardware performs its memory operations as instructed is not valid anymore. In particular, attackers may induce faults with the goal of reading or writing incorrectly addressed memory, which can have various critical safety and security implications. In this work, we present a solution to this problem and propose a new method for protecting every memory access inside a program against address tampering. The countermeasure comprises two building blocks. First, every pointer inside the program is redundantly encoded using a multiresidue error detection code. The redundancy information is stored in the unused upper bits of the pointer with zero overhead in terms of storage. Second, load and store instructions are extended to link data with the corresponding encoded address from the pointer. Wrong memory accesses subsequently infect the data value allowing the software to detect the error. For evaluation purposes, we implemented our countermeasure into a RISC-V processor, tested it on a FPGA development board, and evaluated the induced overhead. Furthermore, a LLVM-based C compiler has been modified to automatically encode all data pointers, to perform encoded pointer arithmetic, and to emit the extended load/store instructions with linking support. Our evaluations show that the countermeasure induces an average overhead of 10 % in terms of code size and 7 % regarding runtime, which makes it suitable for practical adoption.
Elliptic Curve Cryptosystems are very much delicate to attacks or physical attacks. This paper aims to correctly implementing the fault injection attack against Elliptic Curve Digital Signature Algorithm. More specifically, the proposed algorithm concerns to fault attack which is implemented to sufficiently alter signature against vigilant periodic sequence algorithm that supports the efficient speed up and security perspectives with most prominent and well known scalar multiplication algorithm for ECDSA. The purpose is to properly injecting attack whether any probable countermeasure threatening the pseudo code is determined by the attack model according to the predefined methodologies. We show the results of our experiment with bits acquire from the targeted implementation to determine the reliability of our attack.
Physical attacks especially fault attacks represent one the major threats against embedded systems. In the state of the art, software countermeasures against fault attacks are either applied at the source code level where it will very likely be removed at compilation time, or at assembly level where several transformations need to be performed on the assembly code and lead to significant overheads both in terms of code size and execution time. This paper presents the use of compiler techniques to efficiently automate the application of software countermeasures against instruction-skip fault attacks. We propose a modified LLVM compiler that considers our security objectives throughout the compilation process. Experimental results illustrate the effectiveness of this approach on AES implementations running on an ARM-based microcontroller in terms of security overhead compared to existing solutions.