Visible to the public Biblio

Filters: Keyword is predictability  [Clear All Filters]
2023-03-03
Dal, Deniz, Çelik, Esra.  2022.  Evaluation of the Predictability of Passwords of Computer Engineering Students. 2022 3rd International Informatics and Software Engineering Conference (IISEC). :1–6.
As information and communication technologies evolve every day, so does the use of technology in our daily lives. Along with our increasing dependence on digital information assets, security vulnerabilities are becoming more and more apparent. Passwords are a critical component of secure access to digital systems and applications. They not only prevent unauthorized access to these systems, but also distinguish the users of such systems. Research on password predictability often relies on surveys or leaked data. Therefore, there is a gap in the literature for studies that consider real data in this regard. This study investigates the password security awareness of 161 computer engineering students enrolled in a Linux-based undergraduate course at Ataturk University. The study is conducted in two phases, and in the first phase, 12 dictionaries containing also real student data are formed. In the second phase of the study, a dictionary-based brute-force attack is utilized by means of a serial and parallel version of a Bash script to crack the students’ passwords. In this respect, the /etc/shadow file of the Linux system is used as a basis to compare the hashed versions of the guessed passwords. As a result, the passwords of 23 students, accounting for 14% of the entire student group, were cracked. We believe that this is an unacceptably high prediction rate for such a group with high digital literacy. Therefore, due to this important finding of the study, we took immediate action and shared the results of the study with the instructor responsible for administering the information security course that is included in our curriculum and offered in one of the following semesters.
2023-02-17
Schüle, Mareike, Kraus, Johannes Maria, Babel, Franziska, Reißner, Nadine.  2022.  Patients' Trust in Hospital Transport Robots: Evaluation of the Role of User Dispositions, Anxiety, and Robot Characteristics. 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :246–255.
For designing the interaction with robots in healthcare scenarios, understanding how trust develops in such situations characterized by vulnerability and uncertainty is important. The goal of this study was to investigate how technology-related user dispositions, anxiety, and robot characteristics influence trust. A second goal was to substantiate the association between hospital patients' trust and their intention to use a transport robot. In an online study, patients, who were currently treated in hospitals, were introduced to the concept of a transport robot with both written and video-based material. Participants evaluated the robot several times. Technology-related user dispositions were found to be essentially associated with trust and the intention to use. Furthermore, hospital patients' anxiety was negatively associated with the intention to use. This relationship was mediated by trust. Moreover, no effects of the manipulated robot characteristics were found. In conclusion, for a successful implementation of robots in hospital settings patients' individual prior learning history - e.g., in terms of existing robot attitudes - and anxiety levels should be considered during the introduction and implementation phase.
2022-05-03
Mohan, K. Madan, Yadav, B V Ram Naresh.  2021.  Dynamic Graph Based Encryption Scheme for Cloud Based Services and Storage. 2021 9th International Conference on Cyber and IT Service Management (CITSM). :1—4.

Cloud security includes the strategies which works together to guard data and infrastructure with a set of policies, procedures, controls and technologies. These security events are arranged to protect cloud data, support supervisory obedience and protect customers' privacy as well as setting endorsement rules for individual users and devices. The partition-based handling and encryption mechanism which provide fine-grained admittance control and protected data sharing to the data users in cloud computing. Graph partition problems fall under the category of NP-hard problems. Resolutions to these problems are generally imitative using heuristics and approximation algorithms. Partition problems strategy is used in bi-criteria approximation or resource augmentation approaches with a common extension of hyper graphs, which can address the storage hierarchy.

Xu, Jun, Zhu, Pengcheng, Li, Jiamin, You, Xiaohu.  2021.  Secure Computation Offloading for Multi-user Multi-server MEC-enabled IoT. ICC 2021 - IEEE International Conference on Communications. :1—6.

This paper studies the secure computation offloading for multi-user multi-server mobile edge computing (MEC)-enabled internet of things (IoT). A novel jamming signal scheme is designed to interfere with the decoding process at the Eve, but not impair the uplink task offloading from users to APs. Considering offloading latency and secrecy constraints, this paper studies the joint optimization of communication and computation resource allocation, as well as partial offloading ratio to maximize the total secrecy offloading data (TSOD) during the whole offloading process. The considered problem is nonconvex, and we resort to block coordinate descent (BCD) method to decompose it into three subproblems. An efficient iterative algorithm is proposed to achieve a locally optimal solution to power allocation subproblem. Then the optimal computation resource allocation and offloading ratio are derived in closed forms. Simulation results demonstrate that the proposed algorithm converges fast and achieves higher TSOD than some heuristics.

Mu, Yanzhou, Wang, Zan, Liu, Shuang, Sun, Jun, Chen, Junjie, Chen, Xiang.  2021.  HARS: Heuristic-Enhanced Adaptive Randomized Scheduling for Concurrency Testing. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security (QRS). :219—230.

Concurrency programs often induce buggy results due to the unexpected interaction among threads. The detection of these concurrency bugs costs a lot because they usually appear under a specific execution trace. How to virtually explore different thread schedules to detect concurrency bugs efficiently is an important research topic. Many techniques have been proposed, including lightweight techniques like adaptive randomized scheduling (ARS) and heavyweight techniques like maximal causality reduction (MCR). Compared to heavyweight techniques, ARS is efficient in exploring different schedulings and achieves state-of-the-art performance. However, it will lead to explore large numbers of redundant thread schedulings, which will reduce the efficiency. Moreover, it suffers from the “cold start” issue, when little information is available to guide the distance calculation at the beginning of the exploration. In this work, we propose a Heuristic-Enhanced Adaptive Randomized Scheduling (HARS) algorithm, which improves ARS to detect concurrency bugs guided with novel distance metrics and heuristics obtained from existing research findings. Compared with the adaptive randomized scheduling method, it can more effectively distinguish the traces that may contain concurrency bugs and avoid redundant schedules, thus exploring diverse thread schedules effectively. We conduct an evaluation on 45 concurrency Java programs. The evaluation results show that our algorithm performs more stably in terms of effectiveness and efficiency in detecting concurrency bugs. Notably, HARS detects hard-to-expose bugs more effectively, where the buggy traces are rare or the bug triggering conditions are tricky.

Hassan, Rakibul, Rafatirad, Setareh, Homayoun, Houman, Dinakarrao, Sai Manoj Pudukotai.  2021.  Performance-aware Malware Epidemic Confinement in Large-Scale IoT Networks. ICC 2021 - IEEE International Conference on Communications. :1—6.

As millions of IoT devices are interconnected together for better communication and computation, compromising even a single device opens a gateway for the adversary to access the network leading to an epidemic. It is pivotal to detect any malicious activity on a device and mitigate the threat. Among multiple feasible security threats, malware (malicious applications) poses a serious risk to modern IoT networks. A wide range of malware can replicate itself and propagate through the network via the underlying connectivity in the IoT networks making the malware epidemic inevitable. There exist several techniques ranging from heuristics to game-theory based technique to model the malware propagation and minimize the impact on the overall network. The state-of-the-art game-theory based approaches solely focus either on the network performance or the malware confinement but does not optimize both simultaneously. In this paper, we propose a throughput-aware game theory-based end-to-end IoT network security framework to confine the malware epidemic while preserving the overall network performance. We propose a two-player game with one player being the attacker and other being the defender. Each player has three different strategies and each strategy leads to a certain gain to that player with an associated cost. A tailored min-max algorithm was introduced to solve the game. We have evaluated our strategy on a 500 node network for different classes of malware and compare with existing state-of-the-art heuristic and game theory-based solutions.

Zeighami, Sepanta, Ghinita, Gabriel, Shahabi, Cyrus.  2021.  Secure Dynamic Skyline Queries Using Result Materialization. 2021 IEEE 37th International Conference on Data Engineering (ICDE). :157—168.

Skyline computation is an increasingly popular query, with broad applicability to many domains. Given the trend to outsource databases, and due to the sensitive nature of the data (e.g., in healthcare), it is essential to evaluate skylines on encrypted datasets. Research efforts acknowledged the importance of secure skyline computation, but existing solutions suffer from several shortcomings: (i) they only provide ad-hoc security; (ii) they are prohibitively expensive; or (iii) they rely on assumptions such as the presence of multiple non-colluding parties in the protocol. Inspired by solutions for secure nearest-neighbors, we conjecture that a secure and efficient way to compute skylines is through result materialization. However, materialization is much more challenging for skylines queries due to large space requirements. We show that pre-computing skyline results while minimizing storage overhead is NP-hard, and we provide heuristics that solve the problem more efficiently, while maintaining storage at reasonable levels. Our algorithms are novel and also applicable to regular skyline computation, but we focus on the encrypted setting where materialization reduces the response time of skyline queries from hours to seconds. Extensive experiments show that we clearly outperform existing work in terms of performance, and our security analysis proves that we obtain a small (and quantifiable) data leakage.

Wang, Tingting, Zhao, Xufeng, Lv, Qiujian, Hu, Bo, Sun, Degang.  2021.  Density Weighted Diversity Based Query Strategy for Active Learning. 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD). :156—161.

Deep learning has made remarkable achievements in various domains. Active learning, which aims to reduce the budget for training a machine-learning model, is especially useful for the Deep learning tasks with the demand of a large number of labeled samples. Unfortunately, our empirical study finds that many of the active learning heuristics are not effective when applied to Deep learning models in batch settings. To tackle these limitations, we propose a density weighted diversity based query strategy (DWDS), which makes use of the geometry of the samples. Within a limited labeling budget, DWDS enhances model performance by querying labels for the new training samples with the maximum informativeness and representativeness. Furthermore, we propose a beam-search based method to obtain a good approximation to the optimum of such samples. Our experiments show that DWDS outperforms existing algorithms in Deep learning tasks.

Ma, Weijun, Fang, Junyuan, Wu, Jiajing.  2021.  Sequential Node Attack of Complex Networks Based on Q-Learning Method. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). :1—5.

The security issue of complex network systems, such as communication systems and power grids, has attracted increasing attention due to cascading failure threats. Many existing studies have investigated the robustness of complex networks against cascading failure from an attacker's perspective. However, most of them focus on the synchronous attack in which the network components under attack are removed synchronously rather than in a sequential fashion. Most recent pioneering work on sequential attack designs the attack strategies based on simple heuristics like degree and load information, which may ignore the inside functions of nodes. In the paper, we exploit a reinforcement learning-based sequential attack method to investigate the impact of different nodes on cascading failure. Besides, a candidate pool strategy is proposed to improve the performance of the reinforcement learning method. Simulation results on Barabási-Albert scale-free networks and real-world networks have demonstrated the superiority and effectiveness of the proposed method.

Tantawy, Ashraf.  2021.  Automated Malware Design for Cyber Physical Systems. 2021 9th International Symposium on Digital Forensics and Security (ISDFS). :1—6.

The design of attacks for cyber physical systems is critical to assess CPS resilience at design time and run-time, and to generate rich datasets from testbeds for research. Attacks against cyber physical systems distinguish themselves from IT attacks in that the main objective is to harm the physical system. Therefore, both cyber and physical system knowledge are needed to design such attacks. The current practice to generate attacks either focuses on the cyber part of the system using IT cyber security existing body of knowledge, or uses heuristics to inject attacks that could potentially harm the physical process. In this paper, we present a systematic approach to automatically generate integrity attacks from the CPS safety and control specifications, without knowledge of the physical system or its dynamics. The generated attacks violate the system operational and safety requirements, hence present a genuine test for system resilience. We present an algorithm to automate the malware payload development. Several examples are given throughout the paper to illustrate the proposed approach.

HAMRIOUI, Sofiane, BOKHARI, Samira.  2021.  A new Cybersecurity Strategy for IoE by Exploiting an Optimization Approach. 2021 12th International Conference on Information and Communication Systems (ICICS). :23—28.

Today's companies are increasingly relying on Internet of Everything (IoE) to modernize their operations. The very complexes characteristics of such system expose their applications and their exchanged data to multiples risks and security breaches that make them targets for cyber attacks. The aim of our work in this paper is to provide an cybersecurity strategy whose objective is to prevent and anticipate threats related to the IoE. An economic approach is used in order to help to take decisions according to the reduction of the risks generated by the non definition of the appropriate levels of security. The considered problem have been resolved by exploiting a combinatorial optimization approach with a practical case of knapsack. We opted for a bi-objective modeling under uncertainty with a constraint of cardinality and a given budget to be respected. To guarantee a robustness of our strategy, we have also considered the criterion of uncertainty by taking into account all the possible threats that can be generated by a cyber attacks over IoE. Our strategy have been implemented and simulated under MATLAB environement and its performance results have been compared to those obtained by NSGA-II metaheuristic. Our proposed cyber security strategy recorded a clear improvment of efficiency according to the optimization of the security level and cost parametrs.

Stavrinides, Georgios L., Karatza, Helen D..  2021.  Security and Cost Aware Scheduling of Real-Time IoT Workflows in a Mist Computing Environment. 2021 8th International Conference on Future Internet of Things and Cloud (FiCloud). :34—41.

In this paper we propose a security and cost aware scheduling heuristic for real-time workflow jobs that process Internet of Things (IoT) data with various security requirements. The environment under study is a four-tier architecture, consisting of IoT, mist, fog and cloud layers. The resources in the mist, fog and cloud tiers are considered to be heterogeneous. The proposed scheduling approach is compared to a baseline strategy, which is security aware, but not cost aware. The performance evaluation of both heuristics is conducted via simulation, under different values of security level probabilities for the initial IoT input data of the entry tasks of the workflow jobs.

2021-04-27
Fu, Y., Tong, S., Guo, X., Cheng, L., Zhang, Y., Feng, D..  2020.  Improving the Effectiveness of Grey-box Fuzzing By Extracting Program Information. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :434–441.
Fuzzing has been widely adopted as an effective techniques to detect vulnerabilities in softwares. However, existing fuzzers suffer from the problems of generating excessive test inputs that either cannot pass input validation or are ineffective in exploring unvisited regions in the program under test (PUT). To tackle these problems, we propose a greybox fuzzer called MuFuzzer based on AFL, which incorporates two heuristics that optimize seed selection and automatically extract input formatting information from the PUT to increase the chance of generating valid test inputs, respectively. In particular, the first heuristic collects the branch coverage and execution information during a fuzz session, and utilizes such information to guide fuzzing tools in selecting seeds that are fast to execute, small in size, and more importantly, more likely to explore new behaviors of the PUT for subsequent fuzzing activities. The second heuristic automatically identifies string comparison operations that the PUT uses for input validation, and establishes a dictionary with string constants from these operations to help fuzzers generate test inputs that have higher chances to pass input validation. We have evaluated the performance of MuFuzzer, in terms of code coverage and bug detection, using a set of realistic programs and the LAVA-M test bench. Experiment results demonstrate that MuFuzzer is able to achieve higher code coverage and better or comparative bug detection performance than state-of-the-art fuzzers.
Junosza-Szaniawski, K., Nogalski, D., Wójcik, A..  2020.  Exact and approximation algorithms for sensor placement against DDoS attacks. 2020 15th Conference on Computer Science and Information Systems (FedCSIS). :295–301.
In DDoS attack (Distributed Denial of Service), an attacker gains control of many network users by a virus. Then the controlled users send many requests to a victim, leading to lack of its resources. DDoS attacks are hard to defend because of distributed nature, large scale and various attack techniques. One of possible ways of defense is to place sensors in the network that can detect and stop an unwanted request. However, such sensors are expensive so there is a natural question about a minimum number of sensors and their optimal placement to get the required level of safety. We present two mixed integer models for optimal sensor placement against DDoS attacks. Both models lead to a trade-off between the number of deployed sensors and the volume of uncontrolled flow. Since above placement problems are NP-hard, two efficient heuristics are designed, implemented and compared experimentally with exact linear programming solvers.
Harada, T., Tanaka, K., Ogasawara, R., Mikawa, K..  2020.  A Rule Reordering Method via Pairing Dependent Rules. 2020 IEEE Conference on Communications and Network Security (CNS). :1–9.
Packet classification is used to determine the behavior of incoming packets to network devices. Because it is achieved using a linear search on a classification rule list, a larger number of rules leads to a longer communication latency. To decrease this latency, the problem is generalized as Optimal Rule Ordering (ORO), which aims to identify the order of rules that minimizes the classification latency caused by packet classification while preserving the classification policy. Because ORO is known to be NP-complete by Hamed and Al-Shaer [Dynamic rule-ordering optimization for high-speed firewall filtering, ASIACCS (2006) 332-342], various heuristics for ORO have been proposed. Sub-graph merging (SGM) by Tapdiya and Fulp [Towards optimal firewall rule ordering utilizing directed acyclical graphs, ICCCN (2009) 1-6] is the state of the art heuristic algorithm for ORO. In this paper, we propose a novel heuristic method for ORO. Although most heuristics try to recursively determine the maximum-weight rule and move it as far as possible to an upper position, our algorithm pairs rules that cause policy violations until there are no such rules to simply sort the rules by these weights. Our algorithm markedly decreases the classification latency and reordering time compared with SGM in experiments. The sets consisting of thousands of rules that require one or more hours for reordering by SGM can be reordered by the proposed method within one minute.
Gui, J., Li, D., Chen, Z., Rhee, J., Xiao, X., Zhang, M., Jee, K., Li, Z., Chen, H..  2020.  APTrace: A Responsive System for Agile Enterprise Level Causality Analysis. 2020 IEEE 36th International Conference on Data Engineering (ICDE). :1701–1712.
While backtracking analysis has been successful in assisting the investigation of complex security attacks, it faces a critical dependency explosion problem. To address this problem, security analysts currently need to tune backtracking analysis manually with different case-specific heuristics. However, existing systems fail to fulfill two important system requirements to achieve effective backtracking analysis. First, there need flexible abstractions to express various types of heuristics. Second, the system needs to be responsive in providing updates so that the progress of backtracking analysis can be frequently inspected, which typically involves multiple rounds of manual tuning. In this paper, we propose a novel system, APTrace, to meet both of the above requirements. As we demonstrate in the evaluation, security analysts can effectively express heuristics to reduce more than 99.5% of irrelevant events in the backtracking analysis of real-world attack cases. To improve the responsiveness of backtracking analysis, we present a novel execution-window partitioning algorithm that significantly reduces the waiting time between two consecutive updates (especially, 57 times reduction for the top 1% waiting time).
Vuppalapati, C., Ilapakurti, A., Kedari, S., Vuppalapati, R., Vuppalapati, J., Kedari, S..  2020.  The Role of Combinatorial Mathematical Optimization and Heuristics to improve Small Farmers to Veterinarian access and to create a Sustainable Food Future for the World. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :214–221.
The Global Demand for agriculture and dairy products is rising. Demand is expected to double by 2050. This will challenge agriculture markets in a way we have not seen before. For instance, unprecedented demand to increase in dairy farm productivity of already shrinking farms, untethered perpetual access to veterinarians by small dairy farms, economic engines of the developing countries, for animal husbandry and, finally, unprecedented need to increase productivity of veterinarians who're already understaffed, over-stressed, resource constrained to meet the current global dairy demands. The lack of innovative solutions to address the challenge would result in a major obstacle to achieve sustainable food future and a colossal roadblock ending economic disparities. The paper proposes a novel innovative data driven framework cropped by data generated using dairy Sensors and by mathematical formulations using Solvers to generate an exclusive veterinarian daily farms prioritized visit list so as to have a greater coverage of the most needed farms performed in-time and improve small farmers access to veterinarians, a precious and highly shortage & stressed resource.
Saganowski, S..  2020.  A Three-Stage Machine Learning Network Security Solution for Public Entities. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1097–1104.
In the era of universal digitization, ensuring network and data security is extremely important. As a part of the Regional Center for Cybersecurity initiative, a three-stage machine learning network security solution is being developed and will be deployed in March 2021. The solution consists of prevention, monitoring, and curation stages. As prevention, we utilize Natural Language Processing to extract the security-related information from social media, news portals, and darknet. A deep learning architecture is used to monitor the network in real-time and detect any abnormal traffic. A combination of regular expressions, pattern recognition, and heuristics are applied to the abuse reports to automatically identify intrusions that passed other security solutions. The lessons learned from the ongoing development of the system, alongside the results, extensive analysis, and discussion is provided. Additionally, a cybersecurity-related corpus is described and published within this work.
Tahsini, A., Dunstatter, N., Guirguis, M., Ahmed, C. M..  2020.  DeepBLOC: A Framework for Securing CPS through Deep Reinforcement Learning on Stochastic Games. 2020 IEEE Conference on Communications and Network Security (CNS). :1–9.

One important aspect in protecting Cyber Physical System (CPS) is ensuring that the proper control and measurement signals are propagated within the control loop. The CPS research community has been developing a large set of check blocks that can be integrated within the control loop to check signals against various types of attacks (e.g., false data injection attacks). Unfortunately, it is not possible to integrate all these “checks” within the control loop as the overhead introduced when checking signals may violate the delay constraints of the control loop. Moreover, these blocks do not completely operate in isolation of each other as dependencies exist among them in terms of their effectiveness against detecting a subset of attacks. Thus, it becomes a challenging and complex problem to assign the proper checks, especially with the presence of a rational adversary who can observe the check blocks assigned and optimizes her own attack strategies accordingly. This paper tackles the inherent state-action space explosion that arises in securing CPS through developing DeepBLOC (DB)-a framework in which Deep Reinforcement Learning algorithms are utilized to provide optimal/sub-optimal assignments of check blocks to signals. The framework models stochastic games between the adversary and the CPS defender and derives mixed strategies for assigning check blocks to ensure the integrity of the propagated signals while abiding to the real-time constraints dictated by the control loop. Through extensive simulation experiments and a real implementation on a water purification system, we show that DB achieves assignment strategies that outperform other strategies and heuristics.

Ritter, D..  2020.  Cost-efficient Integration Process Placement in Multiclouds. 2020 IEEE 24th International Enterprise Distributed Object Computing Conference (EDOC). :115–124.
Integration as a service (INTaaS) is the centrepiece of current corporate, cloud and device integration processes. Thereby, compositions of integration patterns denote the required integration logic as integration processes, currently running in single-clouds. While multicloud settings gain importance, their promised freedom of selecting the best option for a specific problem is currently not realized as well as security constraints are handled in a cost-intensive manner for the INTaaS vendors, leading to security vs. costs goal conflicts.In this work, we propose a design-time placement for processes in multiclouds that is cost-optimal for the INTaaS vendors, and respects configurable security constraints of their customers. To make the solution tractable for larger, productive INTaaS processes, it is relaxed using local search heuristics. The approach is evaluated on real-world integration processes with respect to cost- and runtime-efficiency, and discusses interesting trade-offs.
Tolsdorf, J., Iacono, L. Lo.  2020.  Vision: Shred If Insecure – Persuasive Message Design as a Lesson and Alternative to Previous Approaches to Usable Secure Email Interfaces. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :172–177.
Despite the advances in research on usable secure email, the majority of mail user agents found in practice still violates best practices in UI design and uses ineffective and inhomogeneous design strategies to communicate and let users control the security status of an email message.We propose a novel interaction and design concept that we refer to as persuasive message design. Our approach is derived from heuristics and a systematic meta-study of existing HCI literature on email management, usable secure email and phishing research. Concluding on this body of knowledge we propose the design of interfaces that suppress weak cues and instead manipulate the display of emails according to their technical security level. Persuasive message design addresses several shortcomings of current secure email user interfaces and provides a consistent user experience that can be deployed even by email providers.
2021-01-25
Oesch, S., Bridges, R., Smith, J., Beaver, J., Goodall, J., Huffer, K., Miles, C., Scofield, D..  2020.  An Assessment of the Usability of Machine Learning Based Tools for the Security Operations Center. 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :634—641.

Gartner, a large research and advisory company, anticipates that by 2024 80% of security operation centers (SOCs) will use machine learning (ML) based solutions to enhance their operations.11https://www.ciodive.com/news/how-data-science-tools-can-lighten-the-load-for-cybersecurity-teams/572209/ In light of such widespread adoption, it is vital for the research community to identify and address usability concerns. This work presents the results of the first in situ usability assessment of ML-based tools. With the support of the US Navy, we leveraged the national cyber range-a large, air-gapped cyber testbed equipped with state-of-the-art network and user emulation capabilities-to study six US Naval SOC analysts' usage of two tools. Our analysis identified several serious usability issues, including multiple violations of established usability heuristics for user interface design. We also discovered that analysts lacked a clear mental model of how these tools generate scores, resulting in mistrust \$a\$ and/or misuse of the tools themselves. Surprisingly, we found no correlation between analysts' level of education or years of experience and their performance with either tool, suggesting that other factors such as prior background knowledge or personality play a significant role in ML-based tool usage. Our findings demonstrate that ML-based security tool vendors must put a renewed focus on working with analysts, both experienced and inexperienced, to ensure that their systems are usable and useful in real-world security operations settings.

2020-03-09
Ali Mirza, Qublai K., Hussain, Fatima, Awan, Irfan, Younas, Muhammad, Sharieh, Salah.  2019.  Taxonomy-Based Intelligent Malware Detection Framework. 2019 IEEE Global Communications Conference (GLOBECOM). :1–6.
Timely detection of a malicious piece of code accurately, in an enterprise network or in an individual device, before it propagates and mutate itself, is one of the most challenging tasks in the domain of cyber security. Millions of variants of each latest malware are released every day and each of these variants have a unique static signature. Conventional anti-malware tools use signatures and static heuristics of malware to segregate them from legitimate files, which is not an effective technique because of the number of malware variants released every passing day. To overcome the fundamental flaw of operational techniques, we propose a framework that generalizes the static and dynamic malwarefeaturesthatareusedtotrainmultiplemachinelearning algorithms. The generalization of clean and malicious features enables the framework to accurately differentiate between clean and malicious files.
Cao, Yuan, Zhao, Yongli, Li, Jun, Lin, Rui, Zhang, Jie, Chen, Jiajia.  2019.  Reinforcement Learning Based Multi-Tenant Secret-Key Assignment for Quantum Key Distribution Networks. 2019 Optical Fiber Communications Conference and Exhibition (OFC). :1–3.
We propose a reinforcement learning based online multi-tenant secret-key assignment algorithm for quantum key distribution networks, capable of reducing tenant-request blocking probability more than half compared to the benchmark heuristics.
Nilizadeh, Shirin, Noller, Yannic, Pasareanu, Corina S..  2019.  DifFuzz: Differential Fuzzing for Side-Channel Analysis. 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). :176–187.
Side-channel attacks allow an adversary to uncover secret program data by observing the behavior of a program with respect to a resource, such as execution time, consumed memory or response size. Side-channel vulnerabilities are difficult to reason about as they involve analyzing the correlations between resource usage over multiple program paths. We present DifFuzz, a fuzzing-based approach for detecting side-channel vulnerabilities related to time and space. DifFuzz automatically detects these vulnerabilities by analyzing two versions of the program and using resource-guided heuristics to find inputs that maximize the difference in resource consumption between secret-dependent paths. The methodology of DifFuzz is general and can be applied to programs written in any language. For this paper, we present an implementation that targets analysis of Java programs, and uses and extends the Kelinci and AFL fuzzers. We evaluate DifFuzz on a large number of Java programs and demonstrate that it can reveal unknown side-channel vulnerabilities in popular applications. We also show that DifFuzz compares favorably against Blazer and Themis, two state-of-the-art analysis tools for finding side-channels in Java programs.