Visible to the public Biblio

Filters: Keyword is drugs  [Clear All Filters]
2023-09-01
Paschal Mgembe, Innocent, Ladislaus Msongaleli, Dawson, Chaundhary, Naveen Kumar.  2022.  Progressive Standard Operating Procedures for Darkweb Forensics Investigation. 2022 10th International Symposium on Digital Forensics and Security (ISDFS). :1—3.
With the advent of information and communication technology, the digital space is becoming a playing ground for criminal activities. Criminals typically prefer darkness or a hidden place to perform their illegal activities in a real-world while sometimes covering their face to avoid being exposed and getting caught. The same applies in a digital world where criminals prefer features which provide anonymity or hidden features to perform illegal activities. It is from this spirit the Darkweb is attracting all kinds of criminal activities conducted over the Internet such as selling drugs, illegal weapons, child pornography, assassination for hire, hackers for hire, and selling of malicious exploits, to mention a few. Although the anonymity offered by Darkweb can be exploited as a tool to arrest criminals involved in cybercrime, an in-depth research is needed to advance criminal investigation on Darkweb. Analysis of illegal activities conducted in Darkweb is in its infancy and faces several challenges like lack of standard operating procedures. This study proposes progressive standard operating procedures (SOPs) for Darkweb forensics investigation. We provide the four stages of SOP for Darkweb investigation. The proposed SOP consists of the following stages; identification and profiling, discovery, acquisition and preservation, and the last stage is analysis and reporting. In each stage, we consider the objectives, tools and expected results of that particular stage. Careful consideration of this SOP revealed promising results in the Darkweb investigation.
2023-07-12
Sreeja, C.S., Misbahuddin, Mohammed.  2022.  Anticounterfeiting Method for Drugs Using Synthetic DNA Cryptography. 2022 International Conference on Trends in Quantum Computing and Emerging Business Technologies (TQCEBT). :1—5.
Counterfeited products are a significant problem in both developed and developing countries and has become more critical as an aftermath of COVID-19, exclusively for drugs and medical equipment’s. In this paper, an innovative approach is proposed to resist counterfeiting which is based on the principles of Synthetic DNA. The proposed encryption approach has employed the distinctive features of synthetic DNA in amalgamation with DNA encryption to provide information security and functions as an anticounterfeiting method that ensures usability. The scheme’s security analysis and proof of concept are detailed. Scyther is used to carry out the formal analysis of the scheme, and all of the modeled assertions are verified without any attacks.
2023-06-02
Labrador, Víctor, Pastrana, Sergio.  2022.  Examining the trends and operations of modern Dark-Web marketplaces. 2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). :163—172.

Currently, the Dark Web is one key platform for the online trading of illegal products and services. Analysing the .onion sites hosting marketplaces is of interest for law enforcement and security researchers. This paper presents a study on 123k listings obtained from 6 different Dark Web markets. While most of current works leverage existing datasets, these are outdated and might not contain new products, e.g., those related to the 2020 COVID pandemic. Thus, we build a custom focused crawler to collect the data. Being able to conduct analyses on current data is of considerable importance as these marketplaces continue to change and grow, both in terms of products offered and users. Also, there are several anti-crawling mechanisms being improved, making this task more difficult and, consequently, reducing the amount of data obtained in recent years on these marketplaces. We conduct a data analysis evaluating multiple characteristics regarding the products, sellers, and markets. These characteristics include, among others, the number of sales, existing categories in the markets, the origin of the products and the sellers. Our study sheds light on the products and services being offered in these markets nowadays. Moreover, we have conducted a case study on one particular productive and dynamic drug market, i.e., Cannazon. Our initial goal was to understand its evolution over time, analyzing the variation of products in stock and their price longitudinally. We realized, though, that during the period of study the market suffered a DDoS attack which damaged its reputation and affected users' trust on it, which was a potential reason which lead to the subsequent closure of the market by its operators. Consequently, our study provides insights regarding the last days of operation of such a productive market, and showcases the effectiveness of a potential intervention approach by means of disrupting the service and fostering mistrust.

Dalvi, Ashwini, Bhoir, Soham, Siddavatam, Irfan, Bhirud, S G.  2022.  Dark Web Image Classification Using Quantum Convolutional Neural Network. 2022 International Conference on Trends in Quantum Computing and Emerging Business Technologies (TQCEBT). :1—5.

Researchers have investigated the dark web for various purposes and with various approaches. Most of the dark web data investigation focused on analysing text collected from HTML pages of websites hosted on the dark web. In addition, researchers have documented work on dark web image data analysis for a specific domain, such as identifying and analyzing Child Sexual Abusive Material (CSAM) on the dark web. However, image data from dark web marketplace postings and forums could also be helpful in forensic analysis of the dark web investigation.The presented work attempts to conduct image classification on classes other than CSAM. Nevertheless, manually scanning thousands of websites from the dark web for visual evidence of criminal activity is time and resource intensive. Therefore, the proposed work presented the use of quantum computing to classify the images using a Quantum Convolutional Neural Network (QCNN). Authors classified dark web images into four categories alcohol, drugs, devices, and cards. The provided dataset used for work discussed in the paper consists of around 1242 images. The image dataset combines an open source dataset and data collected by authors. The paper discussed the implementation of QCNN and offered related performance measures.

2023-01-05
Gupta, Laveesh, Bansal, Manvendra, Meeradevi, Gupta, Muskan, Khaitan, Nishit.  2022.  Blockchain Based Solution to Enhance Drug Supply Chain Management for Smart Pharmaceutical Industry. 2022 IEEE 10th Region 10 Humanitarian Technology Conference (R10-HTC). :330—335.
Counterfeit drugs are an immense threat for the pharmaceutical industry worldwide due to limitations of supply chain. Our proposed solution can overcome many challenges as it will trace and track the drugs while in transit, give transparency along with robust security and will ensure legitimacy across the supply chain. It provides a reliable certification process as well. Fabric architecture is permissioned and private. Hyperledger is a preferred framework over Ethereum because it makes use of features like modular design, high efficiency, quality code and open-source which makes it more suitable for B2B applications with no requirement of cryptocurrency in Hyperledger Fabric. QR generation and scanning are provided as a functionality in the application instead of bar code for its easy accessibility to make it more secure and reliable. The objective of our solution is to provide substantial solutions to the supply chain stakeholders in record maintenance, drug transit monitoring and vendor side verification.
2022-07-14
Gonzalez-Zalba, M. Fernando.  2021.  Quantum computing with CMOS technology. 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). :761—761.
Quantum computing is poised to be the innovation driver of the next decade. Its information processing capabilities will radically accelerate drug discovery, improve online security, or even boost artificial intelligence [1]. Building a quantum computer promises to have a major positive impact in society, however building the hardware that will enable that paradigm change its one of the greatest technological challenges for humanity.
2022-04-12
Li, Junyan.  2021.  Threats and data trading detection methods in the dark web. 2021 6th International Conference on Innovative Technology in Intelligent System and Industrial Applications (CITISIA). :1—9.
The dark web has become a major trading platform for cybercriminals, with its anonymity and encrypted content nature make it possible to exchange hacked information and sell illegal goods without being traced. The types of items traded on the dark web have increased with the number of users and demands. In recent years, in addition to the main items sold in the past, including drugs, firearms and child pornography, a growing number of cybercriminals are targeting various types of private information, including different types of account data, identity information and visual data etc. This paper will further discuss the issue of threat detection in the dark web by reviewing the past literature on the subject. An approach is also proposed to identify criminals who commit crimes offline or on the surface network by using private information purchased from the dark web and the original sources of information on the dark web by building a database based on historical victim records for keyword matching and traffic analysis.
2022-01-10
M, Babu, R, Hemchandhar, D, Harish Y., S, Akash, K, Abhishek Todi.  2021.  Voice Prescription with End-to-End Security Enhancements. 2021 6th International Conference on Communication and Electronics Systems (ICCES). :1–8.

The recent analysis indicates more than 250,000 people in the United States of America (USA) die every year because of medical errors. World Health Organisation (WHO) reports states that 2.6 million deaths occur due to medical and its prescription errors. Many of the errors related to the wrong drug/dosage administration by caregivers to patients due to indecipherable handwritings, drug interactions, confusing drug names, etc. The espousal of Mobile-based speech recognition applications will eliminate the errors. This allows physicians to narrate the prescription instead of writing. The application can be accessed through smartphones and can be used easily by everyone. An application program interface has been created for handling requests. Natural language processing is used to read text, interpret and determine the important words for generating prescriptions. The patient data is stored and used according to the Health Insurance Portability and Accountability Act of 1996 (HIPAA) guidelines. The SMS4-BSK encryption scheme is used to provide the data transmission securely over Wireless LAN.

2021-01-15
Zeid, R. B., Moubarak, J., Bassil, C..  2020.  Investigating The Darknet. 2020 International Wireless Communications and Mobile Computing (IWCMC). :727—732.

Cybercrime is growing dramatically in the technological world nowadays. World Wide Web criminals exploit the personal information of internet users and use them to their advantage. Unethical users leverage the dark web to buy and sell illegal products or services and sometimes they manage to gain access to classified government information. A number of illegal activities that can be found in the dark web include selling or buying hacking tools, stolen data, digital fraud, terrorists activities, drugs, weapons, and more. The aim of this project is to collect evidence of any malicious activity in the dark web by using computer security mechanisms as traps called honeypots.

Pete, I., Hughes, J., Chua, Y. T., Bada, M..  2020.  A Social Network Analysis and Comparison of Six Dark Web Forums. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :484—493.

With increasing monitoring and regulation by platforms, communities with criminal interests are moving to the dark web, which hosts content ranging from whistle-blowing and privacy, to drugs, terrorism, and hacking. Using post discussion data from six dark web forums we construct six interaction graphs and use social network analysis tools to study these underground communities. We observe the structure of each network to highlight structural patterns and identify nodes of importance through network centrality analysis. Our findings suggest that in the majority of the forums some members are highly connected and form hubs, while most members have a lower number of connections. When examining the posting activities of central nodes we found that most of the central nodes post in sub-forums with broader topics, such as general discussions and tutorials. These members play different roles in the different forums, and within each forum we identified diverse user profiles.

Park, W..  2020.  A Study on Analytical Visualization of Deep Web. 2020 22nd International Conference on Advanced Communication Technology (ICACT). :81—83.

Nowadays, there is a flood of data such as naked body photos and child pornography, which is making people bloodless. In addition, people also distribute drugs through unknown dark channels. In particular, most transactions are being made through the Deep Web, the dark path. “Deep Web refers to an encrypted network that is not detected on search engine like Google etc. Users must use Tor to visit sites on the dark web” [4]. In other words, the Dark Web uses Tor's encryption client. Therefore, users can visit multiple sites on the dark Web, but not know the initiator of the site. In this paper, we propose the key idea based on the current status of such crimes and a crime information visual system for Deep Web has been developed. The status of deep web is analyzed and data is visualized using Java. It is expected that the program will help more efficient management and monitoring of crime in unknown web such as deep web, torrent etc.

2021-01-11
Zhao, F., Skums, P., Zelikovsky, A., Sevigny, E. L., Swahn, M. H., Strasser, S. M., Huang, Y., Wu, Y..  2020.  Computational Approaches to Detect Illicit Drug Ads and Find Vendor Communities Within Social Media Platforms. IEEE/ACM Transactions on Computational Biology and Bioinformatics. :1–1.
The opioid abuse epidemic represents a major public health threat to global populations. The role social media may play in facilitating illicit drug trade is largely unknown due to limited research. However, it is known that social media use among adults in the US is widespread, there is vast capability for online promotion of illegal drugs with delayed or limited deterrence of such messaging, and further, general commercial sale applications provide safeguards for transactions; however, they do not discriminate between legal and illegal sale transactions. These characteristics of the social media environment present challenges to surveillance which is needed for advancing knowledge of online drug markets and the role they play in the drug abuse and overdose deaths. In this paper, we present a computational framework developed to automatically detect illicit drug ads and communities of vendors.The SVM- and CNNbased methods for detecting illicit drug ads, and a matrix factorization based method for discovering overlapping communities have been extensively validated on the large dataset collected from Google+, Flickr and Tumblr. Pilot test results demonstrate that our computational methods can effectively identify illicit drug ads and detect vendor-community with accuracy. These methods hold promise to advance scientific knowledge surrounding the role social media may play in perpetuating the drug abuse epidemic.
2020-09-04
Kanemura, Kota, Toyoda, Kentaroh, Ohtsuki, Tomoaki.  2019.  Identification of Darknet Markets’ Bitcoin Addresses by Voting Per-address Classification Results. 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :154—158.
Bitcoin is a decentralized digital currency whose transactions are recorded in a common ledger, so called blockchain. Due to the anonymity and lack of law enforcement, Bitcoin has been misused in darknet markets which deal with illegal products, such as drugs and weapons. Therefore from the security forensics aspect, it is demanded to establish an approach to identify newly emerged darknet markets' transactions and addresses. In this paper, we thoroughly analyze Bitcoin transactions and addresses related to darknet markets and propose a novel identification method of darknet markets' addresses. To improve the identification performance, we propose a voting based method which decides the labels of multiple addresses controlled by the same user based on the number of the majority label. Through the computer simulation with more than 200K Bitcoin addresses, it was shown that our voting based method outperforms the nonvoting based one in terms of precision, recal, and F1 score. We also found that DNM's addresses pay higher fees than others, which significantly improves the classification.
Liang, Jiaqi, Li, Linjing, Chen, Weiyun, Zeng, Daniel.  2019.  Targeted Addresses Identification for Bitcoin with Network Representation Learning. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :158—160.

The anonymity and decentralization of Bitcoin make it widely accepted in illegal transactions, such as money laundering, drug and weapon trafficking, gambling, to name a few, which has already caused significant security risk all around the world. The obvious de-anonymity approach that matches transaction addresses and users is not possible in practice due to limited annotated data set. In this paper, we divide addresses into four types, exchange, gambling, service, and general, and propose targeted addresses identification algorithms with high fault tolerance which may be employed in a wide range of applications. We use network representation learning to extract features and train imbalanced multi-classifiers. Experimental results validated the effectiveness of the proposed method.

2020-07-10
Godawatte, Kithmini, Raza, Mansoor, Murtaza, Mohsin, Saeed, Ather.  2019.  Dark Web Along With The Dark Web Marketing And Surveillance. 2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT). :483—485.

Cybercrimes and cyber criminals widely use dark web and illegal functionalities of the dark web towards the world crisis. More than half of the criminal activities and the terror activities conducted through the dark web such as, cryptocurrency, selling human organs, red rooms, child pornography, arm deals, drug deals, hire assassins and hackers, hacking software and malware programs, etc. The law enforcement agencies such as FBI, NSA, Interpol, Mossad, FSB etc, are always conducting surveillance programs through the dark web to trace down the mass criminals and terrorists while stopping the crimes and the terror activities. This paper is about the dark web marketing and surveillance programs. In the deep end research will discuss the dark web access with securely and how the law enforcement agencies exponentially tracking down the users with terror behaviours and activities. Moreover, the paper discusses dark web sites which users can grab the dark web jihadist services and anonymous markets including safety precautions.

2020-03-12
Kumar, Randhir, Tripathi, Rakesh.  2019.  Traceability of Counterfeit Medicine Supply Chain through Blockchain. 2019 11th International Conference on Communication Systems Networks (COMSNETS). :568–570.

The main issues with drug safety in the counterfeit medicine supply chain, are to do with how the drugs are initially manufactured. The traceability of right and active pharmaceutical ingredients during actual manufacture is a difficult process, so detecting drugs that do not contain the intended active ingredients can ultimately lead to end-consumer patient harm or even death. Blockchain's advanced features make it capable of providing a basis for complete traceability of drugs, from manufacturer to end consumer, and the ability to identify counterfeit-drug. This paper aims to address the issue of drug safety using Blockchain and encrypted QR(quick response) code security.

2019-11-11
Kunihiro, Noboru, Lu, Wen-jie, Nishide, Takashi, Sakuma, Jun.  2018.  Outsourced Private Function Evaluation with Privacy Policy Enforcement. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :412–423.
We propose a novel framework for outsourced private function evaluation with privacy policy enforcement (OPFE-PPE). Suppose an evaluator evaluates a function with private data contributed by a data contributor, and a client obtains the result of the evaluation. OPFE-PPE enables a data contributor to enforce two different kinds of privacy policies to the process of function evaluation: evaluator policy and client policy. An evaluator policy restricts entities that can conduct function evaluation with the data. A client policy restricts entities that can obtain the result of function evaluation. We demonstrate our construction with three applications: personalized medication, genetic epidemiology, and prediction by machine learning. Experimental results show that the overhead caused by enforcing the two privacy policies is less than 10% compared to function evaluation by homomorphic encryption without any privacy policy enforcement.
2019-08-05
Tao, Y., Lei, Z., Ruxiang, P..  2018.  Fine-Grained Big Data Security Method Based on Zero Trust Model. 2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS). :1040-1045.

With the rapid development of big data technology, the requirement of data processing capacity and efficiency result in failure of a number of legacy security technologies, especially in the data security domain. Data security risks became extremely important for big data usage. We introduced a novel method to preform big data security control, which comprises three steps, namely, user context recognition based on zero trust, fine-grained data access authentication control, and data access audit based on full network traffic to recognize and intercept risky data access in big data environment. Experiments conducted on the fine-grained big data security method based on the zero trust model of drug-related information analysis system demonstrated that this method can identify the majority of data security risks.

2018-09-12
Rafiuddin, M. F. B., Minhas, H., Dhubb, P. S..  2017.  A dark web story in-depth research and study conducted on the dark web based on forensic computing and security in Malaysia. 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI). :3049–3055.
The following is a research conducted on the Dark Web to study and identify the ins and outs of the dark web, what the dark web is all about, the various methods available to access the dark web and many others. The researchers have also included the steps and precautions taken before the dark web was opened. Apart from that, the findings and the website links / URL are also included along with a description of the sites. The primary usage of the dark web and some of the researcher's experience has been further documented in this research paper.
2018-09-05
Palanisamy, B., Li, C., Krishnamurthy, P..  2017.  Group Differential Privacy-Preserving Disclosure of Multi-level Association Graphs. 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). :2587–2588.

Traditional privacy-preserving data disclosure solutions have focused on protecting the privacy of individual's information with the assumption that all aggregate (statistical) information about individuals is safe for disclosure. Such schemes fail to support group privacy where aggregate information about a group of individuals may also be sensitive and users of the published data may have different levels of access privileges entitled to them. We propose the notion ofεg-Group Differential Privacy that protects sensitive information of groups of individuals at various defined privacy levels, enabling data users to obtain the level of access entitled to them. We present a preliminary evaluation of the proposed notion of group privacy through experiments on real association graph data that demonstrate the guarantees on group privacy on the disclosed data.

2017-11-03
Zulkarnine, A. T., Frank, R., Monk, B., Mitchell, J., Davies, G..  2016.  Surfacing collaborated networks in dark web to find illicit and criminal content. 2016 IEEE Conference on Intelligence and Security Informatics (ISI). :109–114.
The Tor Network, a hidden part of the Internet, is becoming an ideal hosting ground for illegal activities and services, including large drug markets, financial frauds, espionage, child sexual abuse. Researchers and law enforcement rely on manual investigations, which are both time-consuming and ultimately inefficient. The first part of this paper explores illicit and criminal content identified by prominent researchers in the dark web. We previously developed a web crawler that automatically searched websites on the internet based on pre-defined keywords and followed the hyperlinks in order to create a map of the network. This crawler has demonstrated previous success in locating and extracting data on child exploitation images, videos, keywords and linkages on the public internet. However, as Tor functions differently at the TCP level, and uses socket connections, further technical challenges are faced when crawling Tor. Some of the other inherent challenges for advanced Tor crawling include scalability, content selection tradeoffs, and social obligation. We discuss these challenges and the measures taken to meet them. Our modified web crawler for Tor, termed the “Dark Crawler” has been able to access Tor while simultaneously accessing the public internet. We present initial findings regarding what extremist and terrorist contents are present in Tor and how this content is connected to each other in a mapped network that facilitates dark web crimes. Our results so far indicate the most popular websites in the dark web are acting as catalysts for dark web expansion by providing necessary knowledgebase, support and services to build Tor hidden services and onion websites.
Baravalle, A., Lopez, M. S., Lee, S. W..  2016.  Mining the Dark Web: Drugs and Fake Ids. 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW). :350–356.
In the last years, governmental bodies have been futilely trying to fight against dark web marketplaces. Shortly after the closing of "The Silk Road" by the FBI and Europol in 2013, new successors have been established. Through the combination of cryptocurrencies and nonstandard communication protocols and tools, agents can anonymously trade in a marketplace for illegal items without leaving any record. This paper presents a research carried out to gain insights on the products and services sold within one of the larger marketplaces for drugs, fake ids and weapons on the Internet, Agora. Our work sheds a light on the nature of the market, there is a clear preponderance of drugs, which accounts for nearly 80% of the total items on sale. The ready availability of counterfeit documents, while they make up for a much smaller percentage of the market, raises worries. Finally, the role of organized crime within Agora is discussed and presented.