Biblio
The underlying or core technology of Bitcoin cryptocurrency has become a blessing for human being in this era. Everything is gradually changing to digitization in this today's epoch. Bitcoin creates virtual money using Blockchain that's become popular over the world. Blockchain is a shared public ledger, and it includes all transactions which are confirmed. It is almost impossible to crack the hidden information in the blocks of the Blockchain. However, there are certain security and technical challenges like scalability, privacy leakage, selfish mining, etc. which hampers the wide application of Blockchain. In this paper, we briefly discuss this emerging technology namely Blockchain. In addition, we extrapolate in-depth insight on Blockchain technology.
As cloud services greatly facilitate file sharing online, there's been a growing awareness of the security challenges brought by outsourcing data to a third party. Traditionally, the centralized management of cloud service provider brings about safety issues because the third party is only semi-trusted by clients. Besides, it causes trouble for sharing online data conveniently. In this paper, the blockchain technology is utilized for decentralized safety administration and provide more user-friendly service. Apart from that, Ciphertext-Policy Attribute Based Encryption is introduced as an effective tool to realize fine-grained data access control of the stored files. Meanwhile, the security analysis proves the confidentiality and integrity of the data stored in the cloud server. Finally, we evaluate the performance of computation overhead of our system.
The development of Vehicular Ad-hoc NETwork (VANET) has brought many conveniences to human beings, but also brings a very prominent security problem. The traditional solution to the security problem is based on centralized approach which requires a trusted central entity which exists a single point of failure problem. Moreover, there is no approach of technical level to ensure security of data. Therefore, this paper proposes a security architecture of VANET based on blockchain and mobile edge computing. The architecture includes three layers, namely perception layer, edge computing layer and service layer. The perception layer ensures the security of VANET data in the transmission process through the blockchain technology. The edge computing layer provides computing resources and edge cloud services to the perception layer. The service layer uses the combination of traditional cloud storage and blockchain to ensure the security of data.
In blockchain-based systems, malicious behaviour can be detected using auditable information in transactions managed by distributed ledgers. Besides cryptocurrency, blockchain technology has recently been used for other applications, such as file storage. However, most of existing blockchain- based file storage systems can not revoke a user efficiently when multiple users have access to the same file that is encrypted. Actually, they need to update file encryption keys and distribute new keys to remaining users, which significantly increases computation and bandwidth overheads. In this work, we propose a blockchain and proxy re-encryption based design for encrypted file sharing that brings a distributed access control and data management. By combining blockchain with proxy re-encryption, our approach not only ensures confidentiality and integrity of files, but also provides a scalable key management mechanism for file sharing among multiple users. Moreover, by storing encrypted files and related keys in a distributed way, our method can resist collusion attacks between revoked users and distributed proxies.
If, as most experts agree, the mathematical basis of major blockchain systems is (probably if not provably) sound, why do they have a bad reputation? Human misbehavior (such as failed Bitcoin exchanges) accounts for some of the issues, but there are also deeper and more interesting vulnerabilities here. These include design faults and code-level implementation defects, ecosystem issues (such as wallets), as well as approaches such as the "51% attack" all of which can compromise the integrity of blockchain systems. With particular attention to the emerging non-financial applications of blockchain technology, this paper demonstrates the kinds of attacks that are possible and provides suggestions for minimizing the risks involved.
A blockchain powered Health information ecosystem can solve a frequently discussed problem of the lifelong recorded patient health data, which seriously could hurdle the privacy of the patients and the growing data hunger of the research and policy maker institutions. On one side the general availability of the data is vital in emergency situations and supports heavily the different research, population health management and development activities, on the other side using the same data can lead to serious social and ethical problems caused by malicious actors. Currently, the regulation of the privacy data varies all over the world, however underlying principles are always defensive and protective towards patient privacy against general availability. The protective principles cause a defensive, data hiding attitude of the health system developers to avoid breaching the overall law regulations. It makes the policy makers and different - primarily drug - developers to find ways to treat data such a way that lead to ethical and political debates. In our paper we introduce how the blockchain technology can help solving the problem of secure data storing and ensuring data availability at the same time. We use the basic principles of the American HIPAA regulation, which defines the public availability criteria of health data, however the different local regulations may differ significantly. Blockchain's decentralized, intermediary-free, cryptographically secured attributes offer a new way of storing patient data securely and at the same time publicly available in a regulated way, where a well-designed distributed peer-to-peer network incentivize the smooth operation of a full-featured EHR system.
The rise of big data age in the Internet has led to the explosive growth of data size. However, trust issue has become the biggest problem of big data, leading to the difficulty in data safe circulation and industry development. The blockchain technology provides a new solution to this problem by combining non-tampering, traceable features with smart contracts that automatically execute default instructions. In this paper, we present a credible big data sharing model based on blockchain technology and smart contract to ensure the safe circulation of data resources.
Trust Management (TM) systems for authentication are vital to the security of online interactions, which are ubiquitous in our everyday lives. Various systems, like the Web PKI (X.509) and PGP's Web of Trust are used to manage trust in this setting. In recent years, blockchain technology has been introduced as a panacea to our security problems, including that of authentication, without sufficient reasoning, as to its merits.In this work, we investigate the merits of using open distributed ledgers (ODLs), such as the one implemented by blockchain technology, for securing TM systems for authentication. We formally model such systems, and explore how blockchain can help mitigate attacks against them. After formal argumentation, we conclude that in the context of Trust Management for authentication, blockchain technology, and ODLs in general, can offer considerable advantages compared to previous approaches. Our analysis is, to the best of our knowledge, the first to formally model and argue about the security of TM systems for authentication, based on blockchain technology. To achieve this result, we first provide an abstract model for TM systems for authentication. Then, we show how this model can be conceptually encoded in a blockchain, by expressing it as a series of state transitions. As a next step, we examine five prevalent attacks on TM systems, and provide evidence that blockchain-based solutions can be beneficial to the security of such systems, by mitigating, or completely negating such attacks.
A smart city uses information technology to integrate and manage physical, social, and business infrastructures in order to provide better services to its dwellers while ensuring efficient and optimal utilization of available resources. With the proliferation of technologies such as Internet of Things (IoT), cloud computing, and interconnected networks, smart cities can deliver innovative solutions and more direct interaction and collaboration between citizens and the local government. Despite a number of potential benefits, digital disruption poses many challenges related to information security and privacy. This paper proposes a security framework that integrates the blockchain technology with smart devices to provide a secure communication platform in a smart city.
- « first
- ‹ previous
- 1
- 2
- 3