Visible to the public Biblio

Filters: Keyword is Xilinx  [Clear All Filters]
2019-09-09
Zhang, Z., Yu, Q., Njilla, L., Kamhoua, C..  2018.  FPGA-oriented moving target defense against security threats from malicious FPGA tools. 2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :163–166.
The imbalance relationship between FPGA hardware/software providers and FPGA users challenges the assurance of secure design on FPGAs. Existing efforts on FPGA security primarily focus on reverse engineering the downloaded FPGA configuration, retrieving the authentication code or crypto key stored on the embedded memory in FPGAs, and countermeasures for the security threats above. In this work, we investigate new security threats from malicious FPGA tools, and identify stealthy attacks that could occur during FPGA deployment. To address those attacks, we exploit the principles of moving target defense (MTD) and propose a FPGA-oriented MTD (FOMTD) method. Our method is composed of three defense lines, which are formed by an improved user constraint file, random selection of design replicas, and runtime submodule assembling, respectively. The FPGA emulation results show that the proposed FOMTD method reduces the hardware Trojan hit rate by 60% over the baseline, at the cost of 10.76% more power consumption.
2019-03-22
Azzaz, M. S., Tanougast, C., Maali, A., Benssalah, M..  2018.  Hardware Implementation of Multi-Scroll Chaos Based Architecture for Securing Biometric Templates. 2018 International Conference on Smart Communications in Network Technologies (SaCoNeT). :227-231.

In spite of numerous advantages of biometrics-based personal authentication systems over traditional security systems based on token or knowledge, they are vulnerable to attacks that can decrease their security considerably. In this paper, we propose a new hardware solution to protect biometric templates such as fingerprint. The proposed scheme is based on chaotic N × N grid multi-scroll system and it is implemented on Xilinx FPGA. The hardware implementation is achieved by applying numerical solution methods in our study, we use EM (Euler Method). Simulation and experimental results show that the proposed scheme allows a low cost image encryption for embedded systems while still providing a good trade-off between performance and hardware resources. Indeed, security analysis performed to the our scheme, is strong against known different attacks, such as: brute force, statistical, differential, and entropy. Therefore, the proposed chaos-based multiscroll encryption algorithm is suitable for use in securing embedded biometric systems.

2017-11-20
Shahrak, M. Z., Ye, M., Swaminathan, V., Wei, S..  2016.  Two-way real time multimedia stream authentication using physical unclonable functions. 2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP). :1–4.

Multimedia authentication is an integral part of multimedia signal processing in many real-time and security sensitive applications, such as video surveillance. In such applications, a full-fledged video digital rights management (DRM) mechanism is not applicable due to the real time requirement and the difficulties in incorporating complicated license/key management strategies. This paper investigates the potential of multimedia authentication from a brand new angle by employing hardware-based security primitives, such as physical unclonable functions (PUFs). We show that the hardware security approach is not only capable of accomplishing the authentication for both the hardware device and the multimedia stream but, more importantly, introduce minimum performance, resource, and power overhead. We justify our approach using a prototype PUF implementation on Xilinx FPGA boards. Our experimental results on the real hardware demonstrate the high security and low overhead in multimedia authentication obtained by using hardware security approaches.