Biblio
Deep web refers to sites that cannot be found by search engines and makes up the 96% of the digital world. The dark web is the part of the deep web that can only be accessed through specialised tools and anonymity networks. To avoid monitoring and control, communities that seek for anonymization are moving to the dark web. In this work, we scrape five dark web forums and construct five graphs to model user connections. These networks are then studied and compared using data mining techniques and social network analysis tools; for each community we identify the key actors, we study the social connections and interactions, we observe the small world effect, and we highlight the type of discussions among the users. Our results indicate that only a small subset of users are influential, while the rapid dissemination of information and resources between users may affect behaviours and formulate ideas for future members.
We classify .NET files as either benign or malicious by examining directed graphs derived from the set of functions comprising the given file. Each graph is viewed probabilistically as a Markov chain where each node represents a code block of the corresponding function, and by computing the PageRank vector (Perron vector with transport), a probability measure can be defined over the nodes of the given graph. Each graph is vectorized by computing Lebesgue antiderivatives of hand-engineered functions defined on the vertex set of the given graph against the PageRank measure. Files are subsequently vectorized by aggregating the set of vectors corresponding to the set of graphs resulting from decompiling the given file. The result is a fast, intuitive, and easy-to-compute glass-box vectorization scheme, which can be leveraged for training a standalone classifier or to augment an existing feature space. We refer to this vectorization technique as PageRank Measure Integration Vectorization (PMIV). We demonstrate the efficacy of PMIV by training a vanilla random forest on 2.5 million samples of decompiled. NET, evenly split between benign and malicious, from our in-house corpus and compare this model to a baseline model which leverages a text-only feature space. The median time needed for decompilation and scoring was 24ms. 11Code available at https://github.com/gtownrocks/grafuple.
The labor market involves several untrusted actors with contradicting objectives. We propose a blockchain based system for labor market, which provides benefits to all participants in terms of confidence, transparency, trust and tracking. Our system would handle employment data through new Wavelet blockchain platform. It would change the job market enabling direct agreements between parties without other participants, and providing new mechanisms for negotiating the employment conditions. Furthermore, our system would reduce the need in existing paper workflow as well as in major internet recruiting companies. The key differences of our work from other blockchain based labor record systems are usage of Wavelet blockchain platform, which features metastability, directed acyclic graph system and Turing complete smart contracts platform and introduction of human interaction inside the smart contracts logic, instead of automatic execution of contracts. The results are promising while inconclusive and we would further explore potential of blockchain solutions for labor market problems.
Keystroke dynamics study the way in which users input text via their keyboards, which is unique to each individual, and can form a component of a behavioral biometric system to improve existing account security. Keystroke dynamics systems on free-text data use n-graphs that measure the timing between consecutive keystrokes to distinguish between users. Many algorithms require 500, 1,000, or more keystrokes to achieve EERs of below 10%. In this paper, we propose an instance-based graph comparison algorithm to reduce the number of keystrokes required to authenticate users. Commonly used features such as monographs and digraphs are investigated. Feature importance is determined and used to construct a fused classifier. Detection error tradeoff (DET) curves are produced with different numbers of keystrokes. The fused classifier outperforms the state-of-the-art with EERs of 7.9%, 5.7%, 3.4%, and 2.7% for test samples of 50, 100, 200, and 500 keystrokes.
Resilient control systems should efficiently restore control into physical systems not only after the sabotage of themselves, but also after breaking physical systems. To enhance resilience of control systems, given an originally minimal-input controlled linear-time invariant(LTI) physical system, we address the problem of efficient control recovery into it after removing a known system vertex by finding the minimum number of inputs. According to the minimum input theorem, given a digraph embedded into LTI model and involving a precomputed maximum matching, this problem is modeled into recovering controllability of it after removing a known network vertex. Then, we recover controllability of the residual network by efficiently finding a maximum matching rather than recomputation. As a result, except for precomputing a maximum matching and the following removed vertex, the worst-case execution time of control recovery into the residual LTI physical system is linear.
A significant segment of the Internet of Things (IoT) is the resource constrained Low Power and Lossy Networks (LLNs). The communication protocol used in LLNs is 6LOWPAN (IPv6 over Low-power Wireless Personal Area Network) which makes use of RPL (IPv6 Routing Protocol over Low power and Lossy network) as its routing protocol. In recent times, several security breaches in IoT networks occurred by targeting routers to instigate various DDoS (Distributed Denial of Service) attacks. Hence, routing security has become an important problem in securing the IoT environment. Though RPL meets all the routing requirements of LLNs, it is important to perform a holistic security assessment of RPL as it is susceptible to many security attacks. An important attribute of RPL is its rank property. The rank property defines the placement of sensor nodes in the RPL DODAG (Destination Oriented Directed Acyclic Graphs) based on an Objective Function. Examples of Objective Functions include Expected Transmission Count, Packet Delivery Rate etc. Rank property assists in routing path optimization, reducing control overhead and maintaining a loop free topology through rank based data path validation. In this paper, we investigate the vulnerabilities of the rank property of RPL by constructing an Attack Graph. For the construction of the Attack Graph we analyzed all the possible threats associated with rank property. Through our investigation we found that violation of protocols related to rank property results in several RPL attacks causing topological sub-optimization, topological isolation, resource consumption and traffic disruption. Routing security essentially comprises mechanisms to ensure correct implementation of the routing protocol. In this paper, we also present some observations which can be used to devise mechanisms to prevent the exploitation of the vulnerabilities of the rank property.
Keystroke dynamics is a form of behavioral biometrics that can be used for continuous authentication of computer users. Many classifiers have been proposed for the analysis of acquired user patterns and verification of users at computer terminals. The underlying machine learning methods that use Gaussian density estimator for outlier detection typically assume that the digraph patterns in keystroke data are generated from a single Gaussian distribution. In this paper, we relax this assumption by allowing digraphs to fit more than one distribution via the Gaussian Mixture Model (GMM). We have conducted an experiment with a public data set collected in a controlled environment. Out of 30 users with dynamic text, we obtain 0.08% Equal Error Rate (EER) with 2 components by using GMM, while pure Gaussian yields 1.3% EER for the same data set (an improvement of EER by 93.8%). Our results show that GMM can recognize keystroke dynamics more precisely and authenticate users with higher confidence level.
The aim of this research is to advance the user active authentication using keystroke dynamics. Through this research, we assess the performance and influence of various keystroke features on keystroke dynamics authentication systems. In particular, we investigate the performance of keystroke features on a subset of most frequently used English words. The performance of four features such as i) key duration, ii) flight time latency, iii) diagraph time latency, and iv) word total time duration are analyzed. Two machine learning techniques are employed for assessing keystroke authentications. The selected classification methods are support vector machine (SVM), and k-nearest neighbor classifier (K-NN). The logged experimental data are captured for 28 users. The experimental results show that key duration time offers the best performance result among all four keystroke features, followed by word total time.
This paper describes Smartpig, an algorithm for the iterative mosaicking of images of a planar surface using a unique parameterization which decomposes inter-image projective warps into camera intrinsics, fronto-parallel projections, and inter-image similarities. The constraints resulting from the inter-image alignments within an image set are stored in an undirected graph structure allowing efficient optimization of image projections on the plane. Camera pose is also directly recoverable from the graph, making Smartpig a feasible solution to the problem of simultaneous location and mapping (SLAM). Smartpig is demonstrated on a set of 144 high resolution aerial images and evaluated with a number of metrics against ground control.
We propose a distributed continuous-time algorithm to solve a network optimization problem where the global cost function is a strictly convex function composed of the sum of the local cost functions of the agents. We establish that our algorithm, when implemented over strongly connected and weight-balanced directed graph topologies, converges exponentially fast when the local cost functions are strongly convex and their gradients are globally Lipschitz. We also characterize the privacy preservation properties of our algorithm and extend the convergence guarantees to the case of time-varying, strongly connected, weight-balanced digraphs. When the network topology is a connected undirected graph, we show that exponential convergence is still preserved if the gradients of the strongly convex local cost functions are locally Lipschitz, while it is asymptotic if the local cost functions are convex. We also study discrete-time communication implementations. Specifically, we provide an upper bound on the stepsize of a synchronous periodic communication scheme that guarantees convergence over connected undirected graph topologies and, building on this result, design a centralized event-triggered implementation that is free of Zeno behavior. Simulations illustrate our results.
We propose a distributed continuous-time algorithm to solve a network optimization problem where the global cost function is a strictly convex function composed of the sum of the local cost functions of the agents. We establish that our algorithm, when implemented over strongly connected and weight-balanced directed graph topologies, converges exponentially fast when the local cost functions are strongly convex and their gradients are globally Lipschitz. We also characterize the privacy preservation properties of our algorithm and extend the convergence guarantees to the case of time-varying, strongly connected, weight-balanced digraphs. When the network topology is a connected undirected graph, we show that exponential convergence is still preserved if the gradients of the strongly convex local cost functions are locally Lipschitz, while it is asymptotic if the local cost functions are convex. We also study discrete-time communication implementations. Specifically, we provide an upper bound on the stepsize of a synchronous periodic communication scheme that guarantees convergence over connected undirected graph topologies and, building on this result, design a centralized event-triggered implementation that is free of Zeno behavior. Simulations illustrate our results.