Visible to the public Biblio

Filters: Keyword is demagnetisation  [Clear All Filters]
2020-11-30
Peng, Y., Yue, M., Li, H., Li, Y., Li, C., Xu, H., Wu, Q., Xi, W..  2018.  The Effect of Easy Axis Deviations on the Magnetization Reversal of Co Nanowire. IEEE Transactions on Magnetics. 54:1–5.
Macroscopic hysteresis loops and microscopic magnetic moment distributions have been determined by 3-D model for Co nanowire with various easy axis deviations from applied field. It is found that both the coercivity and the remanence decrease monotonously with the increase of easy axis deviation as well as the maximum magnetic product, indicating the large impact of the easy axis orientation on the magnetic performance. Moreover, the calculated angular distributions and the evolution of magnetic moments have been shown to explain the magnetic reversal process. It is demonstrated that the large demagnetization field in the two ends of the nanowire makes the occurrence of reversal domain nucleation easier, hence the magnetic reversal. In addition, the magnetic reversal was illustrated in terms of the analysis of the energy evolution.
Chen, Z., Bai, B., Chen, D., Chai, W..  2018.  Direct-Current and Alternate-Decay-Current Hybrid Integrative Power Supplies Design Applied to DC Bias Treatment. IEEE Transactions on Power Electronics. 33:10251–10264.
This paper proposes a novel kind of direct-current and alternate-decay-current hybrid integrative magnetization and demagnetization power supplies applied to transformer dc bias treatment based on a nanocomposite magnetic material. First, according to the single-phase transformer structure, one dc bias magnetic compensation mechanism was provided. The dc bias flux in the transformer main core could be eliminated directionally by utilizing the material remanence. Second, for the rapid response characteristic of the magnetic material to an external magnetic field, one positive and negative dc magnetization superimposed decaying ac demagnetization hybrid integrative power supplies based on single-phase rectifier circuit and inverter circuit was designed. In order to accurately control the magnetic field strength by which a good de/-magnetization effect could be achieved, this paper adopts the double-loop control technology of the magnetic field strength and magnetizing current for the nanocomposite magnetic state adjustment. Finally, two 10 kVA transformers and the experiment module of the hybrid integrative power supplies were manufactured and built. Experimental results showed that the integrated power supplies have good de/-magnetization effect and practicability, proving the validity and feasibility of the proposed scheme.
2020-02-24
Kroon, Martin, Bongers, Ed, Bubeck, Klaus.  2019.  Magnetic tests and analysis of JUICE solar array. 2019 European Space Power Conference (ESPC). :1–5.
Very sensitive magnetic instruments on the JUICE spacecraft require an extremely low magnetic field emission of the various subsystems. The JUICE solar array includes a photovoltaic assembly and various mechanisms with a magnetic signature. The design of the photovoltaic assembly has been optimised not only with respect to magnetic moment, but also with respect to the emitted magnetic field, by applying the so-called back-wiring technique, alternating string polarity etc. The remanent magnetic field of the mechanisms (hinges, eddy-current damper, hold-down & release mechanism) was tested including a process for demagnetisation. In addition, the temperature coefficient for the magnetic moment was measured, down to the operational temperature of -130°C. The eddy-current damper was also subjected to a field-induced magnetisation test. All the contributors were included in a model to calculate the magnetic field at the instrument location.
Song, Juncai, Zhao, Jiwen, Dong, Fei, Zhao, Jing, Xu, Liang, Wang, Lijun, Xie, Fang.  2019.  Demagnetization Modeling Research for Permanent Magnet in PMSLM Using Extreme Learning Machine. 2019 IEEE International Electric Machines Drives Conference (IEMDC). :1757–1761.
This paper investigates the temperature demagnetization modeling method for permanent magnets (PM) in permanent magnet synchronous linear motor (PMSLM). First, the PM characteristics are presented, and finite element analysis (FEA) is conducted to show the magnetic distribution under different temperatures. Second, demagnetization degrees and remanence of the five PMs' experiment sample are actually measured in stove at temperatures varying from room temperature to 300 °C, and to obtain the real data for next-step modeling. Third, machine learning algorithm called extreme learning machine (ELM) is introduced to map the nonlinear relationships between temperature and demagnetization characteristics of PM and build the demagnetization models. Finally, comparison experiments between linear modeling method, polynomial modeling method, and ELM can certify the effectiveness and advancement of this proposed method.
2019-09-30
Elbidweihy, H., Arrott, A. S., Provenzano, V..  2018.  Modeling the Role of the Buildup of Magnetic Charges in Low Anisotropy Polycrystalline Materials. IEEE Transactions on Magnetics. 54:1–5.

A Stoner-Wohlfarth-type model is used to demonstrate the effect of the buildup of magnetic charges near the grain boundaries of low anisotropy polycrystalline materials, revealed by measuring the magnetization during positive-field warming after negative-field cooling. The remnant magnetization after negative-field cooling has two different contributions. The temperature-dependent component is modeled as an assembly of particles with thermal relaxation. The temperature-independent component is modeled as an assembly of particles overcoming variable phenomenological energy barriers corresponding to the change in susceptibility when the anisotropy constant changes its sign. The model is applicable to soft-magnetic materials where the buildup of the magnetic charges near the grain boundaries creates demagnetizing fields opposing, and comparable in magnitude to, the anisotropy field. The results of the model are in qualitative agreement with published data revealing the magneto-thermal characteristics of polycrystalline gadolinium.

Davila, Y. G., Júnior, F. A. Revoredo, Peña-Garcia, R., Padrón-Hernández, E..  2019.  Peak in Angular Dependence of Coercivity in a Hexagonal Array of Permalloy Spherical Nanocaps. IEEE Magnetics Letters. 10:1–3.

Micromagnetic simulations of coercivity as a function of external magnetic field direction were performed for a hexagonal array of hemispherical Permalloy nanocaps. The analysis was based on hysteresis loops for arrangements of nanocaps of variable thickness (5 nm and 10 nm). The angular dependence of coercivity had a maximum at about 80° with respect to the arrangement plane. An increase in coercivity with nanocap thickness is related to the magnetization reversal mechanism, where the dipole energy of individual caps generates an effective intermediate axis, locking the magnetic moments. The coercivity has maximum values of 109 Oe for 5 nm and 156 Oe for 10 nm thickness. The remanence decreases monotonically with angle. This is associated with the influence of shape anisotropy, where the demagnetizing field in the plane of the array is much smaller than the demagnetizing field perpendicular to the plane.

2018-05-16
Kim, M., Park, H., Kim, C., Park, S. K., Ri, H. C..  2017.  The Relation Between Local Hysteresis Losses and Remanent Magnetic Fields in HTSC Films. IEEE Transactions on Applied Superconductivity. 27:1–4.

Various critical state models have been developed to understand the hysteresis loss mechanism of high-temperature superconducting (HTSC) films. The analytic relation between the hysteresis loss and the remanent field was obtained based on Bean's critical state model for thin films in the full-penetration case. Furthermore, numerical calculation of local hysteresis loops was carried out by Kim's critical state model. In this paper, we investigated local hysteresis losses for a GdBCO coated conductor by using low-temperature scanning Hall probe microscopy and reproduced the experimental results by applying the critical state model. Because of the demagnetizing effect in thin films, analysis of local hysteresis losses can be useful approach to understand of total hysteresis losses.

Chandrasekaran, S. K., Crawford, A. C..  2017.  Demagnetization of a Complete Superconducting Radiofrequency Cryomodule: Theory and Practice. IEEE Transactions on Applied Superconductivity. 27:1–6.

A significant advance in magnetic field management in a fully assembled superconducting radiofrequency cryomodule has been achieved and is reported here. Demagnetization of the entire cryomodule after assembly is a crucial step toward the goal of average magnetic flux density less than 0.5 μT at the location of the superconducting radio frequency cavities. An explanation of the physics of demagnetization and experimental results are presented.

2017-12-04
Guerra, Y., Gomes, J. L., Peña-Garcia, R., Delgado, A., Farias, B. V. M., Fuentes, G. P., Gonçalves, L. A. P., Padrón-Hernández, E..  2016.  Micromagnetic Simulation in Hexagonal Arrays of Nanosized Hollow Nickel Spheres. IEEE Transactions on Magnetics. 52:1–6.

Arrays of nanosized hollow spheres of Ni were studied using micromagnetic simulation by the Object Oriented Micromagnetic Framework. Before all the results, we will present an analysis of the properties for an individual hollow sphere in order to separate the real effects due to the array. The results in this paper are divided into three parts in order to analyze the magnetic behaviors in the static and dynamic regimes. The first part presents calculations for the magnetic field applied parallel to the plane of the array; specifically, we present the magnetization for equilibrium configurations. The obtained magnetization curves show that decreasing the thickness of the shell decreases the coercive field and it is difficult to obtain magnetic saturation. The values of the coercive field obtained in our work are of the same order as reported in experimental studies in the literature. The magnetic response in our study is dominated by the shape effects and we obtained high values for the reduced remanence, Mr/MS = 0.8. In the second part of this paper, we have changed the orientation of the magnetic field and calculated hysteresis curves to study the angular dependence of the coercive field and remanence. In thin shells, we have observed how the moments are oriented tangentially to the spherical surface. For the inversion of the magnetic moments we have observed the formation of vortex and onion modes. In the third part of this paper, we present an analysis for the process of magnetization reversal in the dynamic regime. The analysis showed that inversion occurs in the nonhomogeneous configuration. We could see that self-demagnetizing effects are predominant in the magnetic properties of the array. We could also observe that there are two contributions: one due to the shell as an independent object and the other due to the effects of the array.

Zhang, Q., Ma, Z., Li, G., Qian, Z., Guo, X..  2016.  Temperature-dependent demagnetization nonlinear Wiener model with neural network for PM synchronous machines in electric vehicle. 2016 19th International Conference on Electrical Machines and Systems (ICEMS). :1–4.

The inevitable temperature raise leads to the demagnetization of permanent magnet synchronous motor (PMSM), that is undesirable in the application of electrical vehicle. This paper presents a nonlinear demagnetization model taking into account temperature with the Wiener structure and neural network characteristics. The remanence and intrinsic coercivity are chosen as intermediate variables, thus the relationship between motor temperature and maximal permanent magnet flux is described by the proposed neural Wiener model. Simulation and experimental results demonstrate the precision of temperature dependent demagnetization model. This work makes the basis of temperature compensation for the output torque from PMSM.