Visible to the public Biblio

Filters: Keyword is electric vehicle  [Clear All Filters]
2022-08-26
Yuan, Quan, Ye, Yujian, Tang, Yi, Liu, Xuefei, Tian, Qidong.  2021.  Optimal Load Scheduling in Coupled Power and Transportation Networks. 2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). :1512–1517.
As a part of the global decarbonization agenda, the electrification of the transport sector involving the large-scale integration of electric vehicles (EV) constitues one of the key initiatives. However, the introduction of EV loads results in more variable electrical demand profiles and higher demand peaks, challenging power system balancing, voltage and network congestion management. In this paper, a novel optimal load scheduling approach for a coupled power and transportation network is proposed. It employs an EV charging demand forecasting model to generate the temporal-spatial distribution of the aggregate EV loads taking into account the uncertainties stemmed from the traffic condition. An AC optimal power flow (ACOPF) problem is formulated and solved to determine the scheduling decisions for the EVs, energy storage units as well as other types of flexible loads, taking into account their operational characteristics. Convex relaxation is performed to convert the original non-convex ACOPF problem to a second order conic program. Case studies demonstrate the effectiveness of the proposed scheduling strategy in accurately forecasting the EV load distribution as well as effectively alleviating the voltage deviation and network congestion in the distribution network through optimal load scheduling control decisions.
2022-06-14
Hataba, Muhammad, Sherif, Ahmed, Elsersy, Mohamed, Nabil, Mahmoud, Mahmoud, Mohamed, Almotairi, Khaled H..  2021.  Privacy-Preserving Biometric-based Authentication Scheme for Electric Vehicles Charging System. 2021 3rd IEEE Middle East and North Africa COMMunications Conference (MENACOMM). :86–91.
Nowadays, with the continuous increase in oil prices and the worldwide shift towards clean energy, all-electric vehicles are booming. Thence, these vehicles need widespread charging systems operating securely and reliably. Consequently, these charging systems need the most robust cybersecurity measures and strong authentication mechanisms to protect its user. This paper presents a new security scheme leveraging human biometrics in terms of iris recognition to defend against multiple types of cyber-attacks such as fraudulent identities, man-in-the-middle attacks, or unauthorized access to electric vehicle charging stations. Fundamentally, the proposed scheme implements a security mechanism based on the inherently unique characteristics of human eye biometric. The objective of the proposed scheme is to enhance the security of electric vehicle charging stations by using a low-cost and efficient authentication using k-Nearest Neighbours (KNN), which is a lightweight encryption algorithm.We tested our system on high-quality images obtained from the standard IITD iris database to search over the encrypted database and authenticate a legitimate user. The results showed that our proposed technique had minimal communication and computation overhead, which is quite suitable for the resource-limited charging station devices. Furthermore, we proved that our scheme outperforms other existing techniques.
2021-11-30
Wang, Zhanle, Munawar, Usman, Paranjape, Raman.  2020.  Stochastic Optimization for Residential Demand Response under Time of Use. 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020). :1–6.
Demand response (DR) is one of the most economical methods for peak demand reduction, renewable energy integration and ancillary service support. Residential electrical energy consumption takes approximately 33% of the total electricity usage and hence has great potentials in DR applications. However, residential DR encounters various challenges such as small individual magnitude, stochastic consuming patterns and privacy issues. In this study, we propose a stochastic optimal mechanism to tackle these issues and try to reveal the benefits from residential DR implementation. Stochastic residential load (SRL) models, a generation cost prediction (GCP) model and a stochastic optimal load aggregation (SOLA) model are developed. A set of uniformly distributed scalers is introduced into the SOLA model to efficiently avoid the peak demand rebound problem in DR applications. The SOLA model is further transformed into a deterministic LP model. Time-of-Use (TOU) tariff is adopted as the price structure because of its similarity and popularity. Case studies show that the proposed mechanism can significantly reduce the peak-to-average power ratio (PAPR) of the load profile as well as the electrical energy cost. Furthermore, the impacts of consumers' participation levels in the DR program are investigated. Simulation results show that the 50% participation level appears as the best case in terms system stability. With the participation level of 80%, consumers' electrical energy cost is minimized. The proposed mechanism can be used by a residential load aggregator (LA) or a utility to plan a DR program, predict its impacts, and aggregate residential loads to minimize the electrical energy cost.
2021-08-31
Won, Hoyun, Hong, Yang-Ki, Choi, Minyeong, Yoon, Hwan-sik, Li, Shuhui, Haskew, Tim.  2020.  Novel Efficiency-shifting Radial-Axial Hybrid Interior Permanent Magnet Sychronous Motor for Electric Vehicle. 2020 IEEE Energy Conversion Congress and Exposition (ECCE). :47–52.
A novel efficiency-shifting radial-axial hybrid permanent magnet synchronous motor that can realize two high-efficiency regions at low and high speeds is developed to extend the maximum driving distance and track the reference speed more accurately for electric vehicle application. The motor has two stators, which are radial and axial, to rotate one shared rotor. The rotor employs two combined topologies, i.e., inner surface-inset-mounted and outer V-shaped interior-mounted. For both outer and inner permanent magnets, Nd-Fe-B, having the remanent flux density of 1.23 T and coercivity of 890 kA/m, is used. The simulation result shows that the designed motor exhibits not only high maximum torque of 400 Nm and the maximum speed of 18,000 rpm but also two high-efficiency regions of 97.6 % and 92.0 % at low and high speed, respectively. Lastly, the developed motor shows better performance than corresponding separated radial and axial permanent magnet motor.
2020-11-04
Rahman, S., Aburub, H., Mekonnen, Y., Sarwat, A. I..  2018.  A Study of EV BMS Cyber Security Based on Neural Network SOC Prediction. 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T D). :1—5.

Recent changes to greenhouse gas emission policies are catalyzing the electric vehicle (EV) market making it readily accessible to consumers. While there are challenges that arise with dense deployment of EVs, one of the major future concerns is cyber security threat. In this paper, cyber security threats in the form of tampering with EV battery's State of Charge (SOC) was explored. A Back Propagation (BP) Neural Network (NN) was trained and tested based on experimental data to estimate SOC of battery under normal operation and cyber-attack scenarios. NeuralWare software was used to run scenarios. Different statistic metrics of the predicted values were compared against the actual values of the specific battery tested to measure the stability and accuracy of the proposed BP network under different operating conditions. The results showed that BP NN was able to capture and detect the false entries due to a cyber-attack on its network.

2020-03-02
Vatanparvar, Korosh, Al Faruque, Mohammad Abdullah.  2019.  Self-Secured Control with Anomaly Detection and Recovery in Automotive Cyber-Physical Systems. 2019 Design, Automation Test in Europe Conference Exhibition (DATE). :788–793.

Cyber-Physical Systems (CPS) are growing with added complexity and functionality. Multidisciplinary interactions with physical systems are the major keys to CPS. However, sensors, actuators, controllers, and wireless communications are prone to attacks that compromise the system. Machine learning models have been utilized in controllers of automotive to learn, estimate, and provide the required intelligence in the control process. However, their estimation is also vulnerable to the attacks from physical or cyber domains. They have shown unreliable predictions against unknown biases resulted from the modeling. In this paper, we propose a novel control design using conditional generative adversarial networks that will enable a self-secured controller to capture the normal behavior of the control loop and the physical system, detect the anomaly, and recover from them. We experimented our novel control design on a self-secured BMS by driving a Nissan Leaf S on standard driving cycles while under various attacks. The performance of the design has been compared to the state-of-the-art; the self-secured BMS could detect the attacks with 83% accuracy and the recovery estimation error of 21% on average, which have improved by 28% and 8%, respectively.

2020-01-20
Shah, Saurabh, Murali, Meera, Gandhi, Priyanka.  2019.  Platform Software Development for Battery Management System in Electric Vehicle. 2019 IEEE International Conference on Sustainable Energy Technologies and Systems (ICSETS). :262–267.

The use of green energy is becoming increasingly more important in today's world. Therefore, the use of electric vehicles (EVs) is proving to be the best choice for the environment in terms of public and personal transportation. As the electric vehicles are battery powered, their management becomes very important because using batteries beyond their safe operating area can be dangerous for the entire vehicle and the person onboard. To maintain the safety and reliability of the battery, it is necessary to implement the functionalities of continuous cell monitoring and evaluation, charge control and cell balancing in battery management systems (BMS). This paper presents the development of platform software required for the implementation of these functionalities. This platform is based on a digital signal processing platform which is a master-slave structure. Serial communication technology is adopted between master and slave. This system allows easier controllability and expandability.

2019-02-08
Yang, B., Xu, G., Zeng, X., Liu, J., Zhang, Y..  2018.  A Lightweight Anonymous Mobile User Authentication Scheme for Smart Grid. 2018 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :821-827.

Smart Grid (SG) technology has been developing for years, which facilitates users with portable access to power through being applied in numerous application scenarios, one of which is the electric vehicle charging. In order to ensure the security of the charging process, users need authenticating with the smart meter for the subsequent communication. Although there are many researches in this field, few of which have endeavored to protect the anonymity and the untraceability of users during the authentication. Further, some studies consider the problem of user anonymity, but they are non-light-weight protocols, even some can not assure any fairness in key agreement. In this paper, we first points out that existing authentication schemes for Smart Grid are neither lack of critical security nor short of important property such as untraceability, then we propose a new two-factor lightweight user authentication scheme based on password and biometric. The authentication process of the proposed scheme includes four message exchanges among the user mobile, smart meter and the cloud server, and then a security one-time session key is generated for the followed communication process. Moreover, the scheme has some new features, such as the protection of the user's anonymity and untraceability. Security analysis shows that our proposed scheme can resist various well-known attacks and the performance analysis shows that compared to other three schemes, our scheme is more lightweight, secure and efficient.

2017-12-04
Zhang, Q., Ma, Z., Li, G., Qian, Z., Guo, X..  2016.  Temperature-dependent demagnetization nonlinear Wiener model with neural network for PM synchronous machines in electric vehicle. 2016 19th International Conference on Electrical Machines and Systems (ICEMS). :1–4.

The inevitable temperature raise leads to the demagnetization of permanent magnet synchronous motor (PMSM), that is undesirable in the application of electrical vehicle. This paper presents a nonlinear demagnetization model taking into account temperature with the Wiener structure and neural network characteristics. The remanence and intrinsic coercivity are chosen as intermediate variables, thus the relationship between motor temperature and maximal permanent magnet flux is described by the proposed neural Wiener model. Simulation and experimental results demonstrate the precision of temperature dependent demagnetization model. This work makes the basis of temperature compensation for the output torque from PMSM.