Visible to the public Biblio

Filters: Keyword is Signal processing algorithms  [Clear All Filters]
2023-09-20
Samia, Bougareche, Soraya, Zehani, Malika, Mimi.  2022.  Fashion Images Classification using Machine Learning, Deep Learning and Transfer Learning Models. 2022 7th International Conference on Image and Signal Processing and their Applications (ISPA). :1—5.
Fashion is the way we present ourselves which mainly focuses on vision, has attracted great interest from computer vision researchers. It is generally used to search fashion products in online shopping malls to know the descriptive information of the product. The main objectives of our paper is to use deep learning (DL) and machine learning (ML) methods to correctly identify and categorize clothing images. In this work, we used ML algorithms (support vector machines (SVM), K-Nearest Neirghbors (KNN), Decision tree (DT), Random Forest (RF)), DL algorithms (Convolutionnal Neurals Network (CNN), AlexNet, GoogleNet, LeNet, LeNet5) and the transfer learning using a pretrained models (VGG16, MobileNet and RestNet50). We trained and tested our models online using google colaboratory with Tensorflow/Keras and Scikit-Learn libraries that support deep learning and machine learning in Python. The main metric used in our study to evaluate the performance of ML and DL algorithms is the accuracy and matrix confusion. The best result for the ML models is obtained with the use of ANN (88.71%) and for the DL models is obtained for the GoogleNet architecture (93.75%). The results obtained showed that the number of epochs and the depth of the network have an effect in obtaining the best results.
Kumar Sahoo, Goutam, Kanike, Keerthana, Das, Santos Kumar, Singh, Poonam.  2022.  Machine Learning-Based Heart Disease Prediction: A Study for Home Personalized Care. 2022 IEEE 32nd International Workshop on Machine Learning for Signal Processing (MLSP). :01—06.
This study develops a framework for personalized care to tackle heart disease risk using an at-home system. The machine learning models used to predict heart disease are Logistic Regression, K - Nearest Neighbor, Support Vector Machine, Naive Bayes, Decision Tree, Random Forest and XG Boost. Timely and efficient detection of heart disease plays an important role in health care. It is essential to detect cardiovascular disease (CVD) at the earliest, consult a specialist doctor before the severity of the disease and start medication. The performance of the proposed model was assessed using the Cleveland Heart Disease dataset from the UCI Machine Learning Repository. Compared to all machine learning algorithms, the Random Forest algorithm shows a better performance accuracy score of 90.16%. The best model may evaluate patient fitness rather than routine hospital visits. The proposed work will reduce the burden on hospitals and help hospitals reach only critical patients.
2023-09-01
Sayed, Aya Nabil, Hamila, Ridha, Himeur, Yassine, Bensaali, Faycal.  2022.  Employing Information Theoretic Metrics with Data-Driven Occupancy Detection Approaches: A Comparative Analysis. 2022 5th International Conference on Signal Processing and Information Security (ICSPIS). :50—54.
Building occupancy data helps increase energy management systems’ performance, enabling lower energy use while preserving occupant comfort. The focus of this study is employing environmental data (e.g., including but not limited to temperature, humidity, carbon dioxide (CO2), etc.) to infer occupancy information. This will be achieved by exploring the application of information theory metrics with machine learning (ML) approaches to classify occupancy levels for a given dataset. Three datasets and six distinct ML algorithms were used in a comparative study to determine the best strategy for identifying occupancy patterns. It was determined that both k-nearest neighbors (kNN) and random forest (RF) identify occupancy labels with the highest overall level of accuracy, reaching 97.99% and 98.56%, respectively.
2023-07-21
Huang, Xiaoge, Yin, Hongbo, Wang, Yongsheng, Chen, Qianbin, Zhang, Jie.  2022.  Location-Based Reliable Sharding in Blockchain-Enabled Fog Computing Networks. 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP). :12—16.
With the explosive growth of the internet of things (IoT) devices, there are amount of data requirements and computing tasks. Fog computing network that could provide computing, caching and communication resources closer to IoT devices (ID) is considered as a potential solution to deal with the vast computing tasks. To improve the performance of the fog computing network while ensuring data security, blockchain technology is enabled and a location-based reliable sharding (LRS) algorithm is proposed, which jointly considers the optimal number of shards, the geographical location of fog nodes (FNs), and the number of nodes in each shard. Firstly, the reliable sharding result is based on the reputation values of FNs, which are related to the decision information and historical reputation value of FNs in the consensus process. Moreover, a reputation based PBFT consensus algorithm is adopted to accelerate the consensus process. Furthermore, the normalized entropy is used to estimate the proportion of malicious nodes and optimize the number of shards. Finally, simulation results show the effectiveness of the proposed scheme.
2023-07-14
Genç, Yasin, Habek, Muhammed, Aytaş, Nilay, Akkoç, Ahmet, Afacan, Erkan, Yazgan, Erdem.  2022.  Elliptic Curve Cryptography for Security in Connected Vehicles. 2022 30th Signal Processing and Communications Applications Conference (SIU). :1–4.
The concept of a connected vehicle refers to the linking of vehicles to each other and to other things. Today, developments in the Internet of Things (IoT) and 5G have made a significant contribution to connected vehicle technology. In addition to many positive contributions, connected vehicle technology also brings with it many security-related problems. In this study, a digital signature algorithm based on elliptic curve cryptography is proposed to verify the message and identity sent to the vehicles. In the proposed model, with the anonymous identification given to the vehicle by the central unit, the vehicle is prevented from being detected by other vehicles and third parties. Thus, even if the personal data produced in the vehicles is shared, it cannot be found which vehicle it belongs to.
ISSN: 2165-0608
2023-04-28
Nema, Tesu, Parsai, M. P..  2022.  Reconstruction of Incomplete Image by Radial Sampling. 2022 International Conference on Computer Communication and Informatics (ICCCI). :1–4.
Signals get sampled using Nyquist rate in conventional sampling method, but in compressive sensing the signals sampled below Nyquist rate by randomly taking the signal projections and reconstructing it out of very few estimations. But in case of recovering the image by utilizing compressive measurements with the help of multi-resolution grid where the image has certain region of interest (RoI) that is more important than the rest, it is not efficient. The conventional Cartesian sampling cannot give good result in motion image sensing recovery and is limited to stationary image sensing process. The proposed work gives improved results by using Radial sampling (a type of compression sensing). This paper discusses the approach of Radial sampling along with the application of Sparse Fourier Transform algorithms that helps in reducing acquisition cost and input/output overhead.
ISSN: 2329-7190
2023-02-03
Rout, Sonali, Mohapatra, Ramesh Kumar.  2022.  Hiding Sensitive Information in Surveillance Video without Affecting Nefarious Activity Detection. 2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP). :1–6.
Protection of private and sensitive information is the most alarming issue for security providers in surveillance videos. So to provide privacy as well as to enhance secrecy in surveillance video without affecting its efficiency in detection of violent activities is a challenging task. Here a steganography based algorithm has been proposed which hides private information inside the surveillance video without affecting its accuracy in criminal activity detection. Preprocessing of the surveillance video has been performed using Tunable Q-factor Wavelet Transform (TQWT), secret data has been hidden using Discrete Wavelet Transform (DWT) and after adding payload to the surveillance video, detection of criminal activities has been conducted with maintaining same accuracy as original surveillance video. UCF-crime dataset has been used to validate the proposed framework. Feature extraction is performed and after feature selection it has been trained to Temporal Convolutional Network (TCN) for detection. Performance measure has been compared to the state-of-the-art methods which shows that application of steganography does not affect the detection rate while preserving the perceptual quality of the surveillance video.
ISSN: 2640-5768
2023-01-20
Qian, Sen, Deng, Hui, Chen, Chuan, Huang, Hui, Liang, Yun, Guo, Jinghong, Hu, Zhengyong, Si, Wenrong, Wang, Hongkang, Li, Yunjia.  2022.  Design of a Nonintrusive Current Sensor with Large Dynamic Range Based on Tunneling Magnetoresistive Devices. 2022 IEEE 5th International Electrical and Energy Conference (CIEEC). :3405—3409.
Current sensors are widely used in power grid for power metering, automation and power equipment monitoring. Since the tradeoff between the sensitivity and the measurement range needs to be made to design a current sensor, it is difficult to deploy one sensor to measure both the small-magnitude and the large-magnitude current. In this research, we design a surface-mount current sensor by using the tunneling magneto-resistance (TMR) devices and show that the tradeoff between the sensitivity and the detection range can be broken. Two TMR devices of different sensitivity degrees were integrated into one current sensor module, and a signal processing algorithm was implemented to fusion the outputs of the two TMR devices. Then, a platform was setup to test the performance of the surface-mount current sensor. The results showed that the designed current sensor could measure the current from 2 mA to 100 A with an approximate 93 dB dynamic range. Besides, the nonintrusive feature of the surface-mount current sensor could make it convenient to be deployed on-site.
2022-12-07
İnce, Talha, Çakir, Sertaç.  2022.  Tightly and Loosely Coupled Architectures for Inertial Navigation System and Doppler Velocity Log Integration at Autonomous Underwater Vehicles. 2022 30th Signal Processing and Communications Applications Conference (SIU). :1—4.
The Inertial Navigation System(INS) and Doppler Velocity Logs(DVL) which are used frequently on autonomous underwater vehicles can be fused under different types of integration architectures. These architectures differ in terms of algorithm requirements and complexity. DVL may experience acoustic beam losses during operation due to environmental factors and abilities of the sensor. In these situations, radial velocity information cannot be received from lost acoustic beam. In this paper, the performances of INS and DVL integration under tightly and loosely coupled architectures are comparatively presented with simulations. In the tightly coupled approach, navigation filter is updated with solely available beam measurements by using sequential measurement update method, and the sensitivity of this method is investigated for acoustic beam losses.
2022-11-18
Gandhi, Vidhyotma, Ramkumar, K.R., Kaur, Amanpreet, Kaushal, Payal, Chahal, Jasmeen Kaur, Singh, Jaiteg.  2021.  Security and privacy in IoT, Cloud and Augmented Reality. 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC). :131—135.
Internet of Things (IoT), Cloud and Augmented Reality (AR) are the emerging and developing technologies and are at the horizon and hype of their life cycle. Lots of commercial applications based on IoT, cloud and AR provide unrestricted access to data. The real-time applications based on these technologies are at the cusp of their innovations. The most frequent security attacks for IoT, cloud and AR applications are DDoS attacks. In this paper a detailed account of various DDoS attacks that can be the hindrance of many important sensitive services and can degrade the overall performance of recent services which are purely based on network communications. The DDoS attacks should be dealt with carefully and a set of a new generations of algorithm need to be developed to mitigate the problems caused by non-repudiation kinds of attacks.
2022-10-20
Butora, Jan, Fridrich, Jessica.  2020.  Steganography and its Detection in JPEG Images Obtained with the "TRUNC" Quantizer. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2762—2766.
Many portable imaging devices use the operation of "trunc" (rounding towards zero) instead of rounding as the final quantizer for computing DCT coefficients during JPEG compression. We show that this has rather profound consequences for steganography and its detection. In particular, side-informed steganography needs to be redesigned due to the different nature of the rounding error. The steganographic algorithm J-UNIWARD becomes vulnerable to steganalysis with the JPEG rich model and needs to be adjusted for this source. Steganalysis detectors need to be retrained since a steganalyst unaware of the existence of the trunc quantizer will experience 100% false alarm.
Liu, Wenyuan, Wang, Jian.  2021.  Research on image steganography information detection based on support vector machine. 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). :631—635.
With the rapid development of the internet of things and cloud computing, users can instantly transmit a large amount of data to various fields, with the development of communication technology providing convenience for people's life, information security is becoming more and more important. Therefore, it is of great significance to study the technology of image hiding information detection. This paper mainly uses the support vector machine learning algorithm to detect the hidden information of the image, based on a standard image library, randomly selecting images for embedding secret information. According to the bit-plane correlation and the gradient energy change of a single bit-plane after encryption of an image LSB matching algorithm, gradient energy change is selected as characteristic change, and the gradient energy change is innovatively applied to a support vector machine classifier algorithm, and has very good detection effect and good stability on the dense image with the embedding rate of more than 40 percent.
2022-09-16
Asaithambi, Gobika, Gopalakrishnan, Balamurugan.  2021.  Design of Code and Chaotic Frequency Modulation for Secure and High Data rate Communication. 2021 5th International Conference on Computer, Communication and Signal Processing (ICCCSP). :1—6.
In Forward Error Correction (FEC), redundant bits are added for detecting and correcting bit error which increases the bandwidth. To solve this issue we combined FEC method with higher order M-ary modulation to provide a bandwidth efficient system. An input bit stream is mapped to a bi-orthogonal code on different levels based on the code rates (4/16, 3/16, and 2/16) used. The jamming attack on wireless networks are mitigated by Chaotic Frequency Hopping (CFH) spread spectrum technique. In this paper, to achieve better data rate and to transmit the data in a secured manner we combined FEC and CFH technique, represented as Code and Chaotic Frequency Modulation (CCFM). In addition, two rate adaptation algorithms namely Static retransmission rate ARF (SARF) and Fast rate reduction ARF (FARF) are employed in CFH technique to dynamically adapt the code rate based on channel condition to reduce a packet retransmission. Symbol Error Rate (SER) performance of the system is analyzed for different code rate with the conventional OFDM in the presence AWGN and Rayleigh channel and the reliability of CFH method is tested under different jammer.
2022-08-12
Prasad Reddy, V H, Kishore Kumar, Puli.  2021.  Performance Comparison of Orthogonal Matching Pursuit and Novel Incremental Gaussian Elimination OMP Reconstruction Algorithms for Compressive Sensing. 2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS). :367—372.
Compressive Sensing (CS) is a promising investigation field in the communication signal processing domain. It offers an advantage of compression while sampling; hence, data redundancy is reduced and improves sampled data transmission. Due to the acquisition of compressed samples, Analog to Digital Conversions (ADCs) performance also improved at ultra-high frequency communication applications. Several reconstruction algorithms existed to reconstruct the original signal with these sub-Nyquist samples. Orthogonal Matching Pursuit (OMP) falls under the category of greedy algorithms considered in this work. We implemented a compressively sensed sampling procedure using a Random Demodulator Analog-to-Information Converter (RD-AIC). And for CS reconstruction, we have considered OMP and novel Incremental Gaussian Elimination (IGE) OMP algorithms to reconstruct the original signal. Performance comparison between OMP and IGE OMP presented.
Killedar, Vinayak, Pokala, Praveen Kumar, Sekhar Seelamantula, Chandra.  2021.  Sparsity Driven Latent Space Sampling for Generative Prior Based Compressive Sensing. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2895—2899.
We address the problem of recovering signals from compressed measurements based on generative priors. Recently, generative-model based compressive sensing (GMCS) methods have shown superior performance over traditional compressive sensing (CS) techniques in recovering signals from fewer measurements. However, it is possible to further improve the performance of GMCS by introducing controlled sparsity in the latent-space. We propose a proximal meta-learning (PML) algorithm to enforce sparsity in the latent-space while training the generator. Enforcing sparsity naturally leads to a union-of-submanifolds model in the solution space. The overall framework is named as sparsity driven latent space sampling (SDLSS). In addition, we derive the sample complexity bounds for the proposed model. Furthermore, we demonstrate the efficacy of the proposed framework over the state-of-the-art techniques with application to CS on standard datasets such as MNIST and CIFAR-10. In particular, we evaluate the performance of the proposed method as a function of the number of measurements and sparsity factor in the latent space using standard objective measures. Our findings show that the sparsity driven latent space sampling approach improves the accuracy and aids in faster recovery of the signal in GMCS.
2022-07-14
Kaur, Amanpreet, Singh, Gurpreet.  2021.  Encryption Algorithms based on Security in IoT (Internet of Things). 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC). :482–486.
The Internet is evolving everywhere and expanding its entity globally. The IoT(Internet of things) is a new and interesting concept introduced in this world of internet. Generally it is interconnected computing device which can be embedded in our daily routine objects through which we can send and receive data. It is beyond connecting computers and laptops only although it can connect billion of devices. It can be described as reliable method of communication that also make use of other technologies like wireless sensor, QR code etc. IoT (Internet of Things) is making everything smart with use of technology like smart homes, smart cities, smart watches. In this chapter, we will study the security algorithms in IoT (Internet of Things) which can be achieved with encryption process. In the world of IoT, data is more vulnerable to threats. So as to protect data integrity, data confidentiality, we have Light weight Encryption Algorithms like symmetric key cryptography and public key cryptography for secure IoT (Internet of Things) named as Secure IoT. Because it is not convenient to use full encryption algorithms that require large memory size, large program code and larger execution time. Light weight algorithms meet all resource constraints of small memory size, less execution time and efficiency. The algorithms can be measured in terms of key size, no of blocks and algorithm structure, chip size and energy consumption. Light Weight Techniques provides security to smart object networks and also provides efficiency. In Symmetric Key Cryptography, two parties can have identical keys but has some practical difficulty. Public Key Cryptography uses both private and public key which are related to each other. Public key is known to everyone while private key is kept secret. Public Key cryptography method is based on mathematical problems. So, to implement this method, one should have a great expertise.
2022-05-05
Raheja, Nisha, Manocha, Amit Kumar.  2021.  An Efficient Encryption-Authentication Scheme for Electrocardiogram Data using the 3DES and Water Cycle Optimization Algorithm. 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC). :10—14.

To share the recorded ECG data with the cardiologist in Golden Hours in an efficient and secured manner via tele-cardiology may save the lives of the population residing in rural areas of a country. This paper proposes an encryption-authentication scheme for secure the ECG data. The main contribution of this work is to generate a one-time padding key and deploying an encryption algorithm in authentication mode to achieve encryption and authentication. This is achieved by a water cycle optimization algorithm that generates a completely random one-time padding key and Triple Data Encryption Standard (3DES) algorithm for encrypting the ECG data. To validate the accuracy of the proposed encryption authentication scheme, experimental results were performed on standard ECG data and various performance parameters were calculated for it. The results show that the proposed algorithm improves security and passes the statistical key generation test.

2022-04-25
El Rai, Marwa, Al-Saad, Mina, Darweesh, Muna, Al Mansoori, Saeed, Al Ahmad, Hussain, Mansoor, Wathiq.  2021.  Moving Objects Segmentation in Infrared Scene Videos. 2021 4th International Conference on Signal Processing and Information Security (ICSPIS). :17–20.
Nowadays, developing an intelligent system for segmenting the moving object from the background is essential task for video surveillance applications. Recently, a deep learning segmentation algorithm composed of encoder CNN, a Feature Pooling Module and a decoder CNN called FgSegNET\_S has been proposed. It is capable to train the model using few training examples. FgSegNET\_S is relying only on the spatial information while it is fundamental to include temporal information to distinguish if an object is moving or not. In this paper, an improved version known as (T\_FgSegNET\_S) is proposed by using the subtracted images from the initial background as input. The proposed approach is trained and evaluated using two publicly available infrared datasets: remote scene infrared videos captured by medium-wave infrared (MWIR) sensors and the Grayscale Thermal Foreground Detection (GTFD) dataset. The performance of network is evaluated using precision, recall, and F-measure metrics. The experiments show improved results, especially when compared to other state-of-the-art methods.
2022-04-19
Cheng, Quan, Yang, Yin, Gui, Xin.  2021.  Disturbance Signal Recognition Using Convolutional Neural Network for DAS System. 2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :278–281.

Distributed acoustic sensing (DAS) systems based on fiber brag grating (FBG) have been widely used for distributed temperature and strain sensing over the past years, and function well in perimeter security monitoring and structural health monitoring. However, with relevant algorithms functioning with low accuracy, the DAS system presently has trouble in signal recognition, which puts forward a higher requirement on a high-precision identification method. In this paper, we propose an improved recognition method based on relative fundamental signal processing methods and convolutional neural network (CNN) to construct a mathematical model of disturbance FBG signal recognition. Firstly, we apply short-time energy (STE) to extract original disturbance signals. Secondly, we adopt short-time Fourier transform (STFT) to divide a longer time signal into short segments. Finally, we employ a CNN model, which has already been trained to recognize disturbance signals. Experimental results conducted in the real environments show that our proposed algorithm can obtain accuracy over 96.5%.

Cordoș, Claudia, Mihail\u a, Laura, Faragó, Paul, Hintea, Sorin.  2021.  ECG Signal Classification Using Convolutional Neural Networks for Biometric Identification. 2021 44th International Conference on Telecommunications and Signal Processing (TSP). :167–170.
The latest security methods are based on biometric features. The electrocardiogram is increasingly used in such systems because it provides biometric features that are difficult to falsify. This paper aims to study the use of the electrocardiogram together with the Convolutional Neural Networks, in order to identify the subjects based on the ECG signal and to improve the security. In this study, we used the Fantasia database, available on the PhysioNet platform, which contains 40 ECG recordings. The ECG signal is pre-processed, and then spectrograms are generated for each ECG signal. Spectrograms are applied to the input of several architectures of Convolutional Neural Networks like Inception-v3, Xception, MobileNet and NasNetLarge. An analysis of performance metrics reveals that the subject identification method based on ECG signal and CNNs provides remarkable results. The best accuracy value is 99.5% and is obtained for Inception-v3.
2022-04-13
He, Gaofeng, Si, Yongrui, Xiao, Xiancai, Wei, Qianfeng, Zhu, Haiting, Xu, Bingfeng.  2021.  Preventing IoT DDoS Attacks using Blockchain and IP Address Obfuscation. 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP). :1—5.
With the widespread deployment of Internet of Things (IoT) devices, hackers can use IoT devices to launch large-scale distributed denial of service (DDoS) attacks, which bring great harm to the Internet. However, how to defend against these attacks remains to be an open challenge. In this paper, we propose a novel prevention method for IoT DDoS attacks based on blockchain and obfuscation of IP addresses. Our observation is that IoT devices are usually resource-constrained and cannot support complicated cryptographic algorithms such as RSA. Based on the observation, we employ a novel authentication then communication mechanism for IoT DDoS attack prevention. In this mechanism, the attack targets' IP addresses are encrypted by a random security parameter. Clients need to be authenticated to obtain the random security parameter and decrypt the IP addresses. In particular, we propose to authenticate clients with public-key cryptography and a blockchain system. The complex authentication and IP address decryption operations disable IoT devices and thus block IoT DDoS attacks. The effectiveness of the proposed method is analyzed and validated by theoretical analysis and simulation experiments.
Chen, Hao, Chen, Lin, Kuang, Xiaoyun, Xu, Aidong, Yang, Yiwei.  2021.  Support Forward Secure Smart Grid Data Deduplication and Deletion Mechanism. 2021 2nd Asia Symposium on Signal Processing (ASSP). :67–76.
With the vigorous development of the Internet and the widespread popularity of smart devices, the amount of data it generates has also increased exponentially, which has also promoted the generation and development of cloud computing and big data. Given cloud computing and big data technology, cloud storage has become a good solution for people to store and manage data at this stage. However, when cloud storage manages and regulates massive amounts of data, its security issues have become increasingly prominent. Aiming at a series of security problems caused by a malicious user's illegal operation of cloud storage and the loss of all data, this paper proposes a threshold signature scheme that is signed by a private key composed of multiple users. When this method performs key operations of cloud storage, multiple people are required to sign, which effectively prevents a small number of malicious users from violating data operations. At the same time, the threshold signature method in this paper uses a double update factor algorithm. Even if the attacker obtains the key information at this stage, he can not calculate the complete key information before and after the time period, thus having the two-way security and greatly improving the security of the data in the cloud storage.
Liu, Ling, Zhang, Shengli, Ling, Cong.  2021.  Set Reconciliation for Blockchains with Slepian-Wolf Coding: Deletion Polar Codes. 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP). :1–5.
In this paper, we propose a polar coding based scheme for set reconciliation between two network nodes. The system is modeled as a well-known Slepian-Wolf setting induced by a fixed number of deletions. The set reconciliation process is divided into two phases: 1) a deletion polar code is employed to help one node to identify the possible deletion indices, which may be larger than the number of genuine deletions; 2) a lossless compression polar code is then designed to feedback those indices with minimum overhead. Our scheme can be viewed as a generalization of polar codes to some emerging network-based applications such as the package synchronization in blockchains. The total overhead is linear to the number of packages, and immune to the package size.
2022-04-12
Lavi, Bahram, Nascimento, José, Rocha, Anderson.  2021.  Semi-Supervised Feature Embedding for Data Sanitization in Real-World Events. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2495—2499.
With the rapid growth of data sharing through social media networks, determining relevant data items concerning a particular subject becomes paramount. We address the issue of establishing which images represent an event of interest through a semi-supervised learning technique. The method learns consistent and shared features related to an event (from a small set of examples) to propagate them to an unlabeled set. We investigate the behavior of five image feature representations considering low- and high-level features and their combinations. We evaluate the effectiveness of the feature embedding approach on five collected datasets from real-world events.
2022-04-01
Peng, Haiyang, Yao, Hao, Zhao, Yue, Chen, Yuxiang, He, YaChen, He, Shanxiang.  2021.  A dense state search method in edge computing environment. 2021 6th International Conference on Communication, Image and Signal Processing (CCISP). :16—22.
In view of the common edge computing-based cloud-side collaborative environment summary existing search key and authentication key sharing caused by data information leakage, this paper proposes a cryptographic search based on public key searchable encryption in an edge computing environment method, this article uses the public key to search for the characteristics of the encryption algorithm, and allows users to manage the corresponding private key. In the process of retrieval and execution, the security of the system can be effectively ensured through the secret trapdoor. Through the comparison of theoretical algorithms, the searchable encryption scheme in the edge computing environment proposed in this paper can effectively reduce the computing overhead on the user side, and complete the over-complex computing process on the edge server or the central server, which can improve the overall efficiency of encrypted search.