Biblio
To share the recorded ECG data with the cardiologist in Golden Hours in an efficient and secured manner via tele-cardiology may save the lives of the population residing in rural areas of a country. This paper proposes an encryption-authentication scheme for secure the ECG data. The main contribution of this work is to generate a one-time padding key and deploying an encryption algorithm in authentication mode to achieve encryption and authentication. This is achieved by a water cycle optimization algorithm that generates a completely random one-time padding key and Triple Data Encryption Standard (3DES) algorithm for encrypting the ECG data. To validate the accuracy of the proposed encryption authentication scheme, experimental results were performed on standard ECG data and various performance parameters were calculated for it. The results show that the proposed algorithm improves security and passes the statistical key generation test.
Distributed acoustic sensing (DAS) systems based on fiber brag grating (FBG) have been widely used for distributed temperature and strain sensing over the past years, and function well in perimeter security monitoring and structural health monitoring. However, with relevant algorithms functioning with low accuracy, the DAS system presently has trouble in signal recognition, which puts forward a higher requirement on a high-precision identification method. In this paper, we propose an improved recognition method based on relative fundamental signal processing methods and convolutional neural network (CNN) to construct a mathematical model of disturbance FBG signal recognition. Firstly, we apply short-time energy (STE) to extract original disturbance signals. Secondly, we adopt short-time Fourier transform (STFT) to divide a longer time signal into short segments. Finally, we employ a CNN model, which has already been trained to recognize disturbance signals. Experimental results conducted in the real environments show that our proposed algorithm can obtain accuracy over 96.5%.