Biblio
We provide a systemization of knowledge of the recent progress made in addressing the crucial problem of deep learning on encrypted data. The problem is important due to the prevalence of deep learning models across various applications, and privacy concerns over the exposure of deep learning IP and user's data. Our focus is on provably secure methodologies that rely on cryptographic primitives and not trusted third parties/platforms. Computational intensity of the learning models, together with the complexity of realization of the cryptography algorithms hinder the practical implementation a challenge. We provide a summary of the state-of-the-art, comparison of the existing solutions, as well as future challenges and opportunities.
Deep Learning Models are vulnerable to adversarial inputs, samples modified in order to maximize error of the system. We hereby introduce Spartan Networks, Deep Learning models that are inherently more resistant to adverarial examples, without doing any input preprocessing out of the network or adversarial training. These networks have an adversarial layer within the network designed to starve the network of information, using a new activation function to discard data. This layer trains the neural network to filter-out usually-irrelevant parts of its input. These models thus have a slightly lower precision, but report a higher robustness under attack than unprotected models.
Human behavior is increasingly sensed and recorded and used to create models that accurately predict the behavior of consumers, employees, and citizens. While behavioral models are important in many domains, the ability to predict individuals' behavior is in the focus of growing privacy concerns. The legal and technological measures for privacy do not adequately recognize and address the ability to infer behavior and traits. In this position paper, we first analyze the shortcoming of existing privacy theories in addressing AI's inferential abilities. We then point to legal and theoretical frameworks that can adequately describe the potential of AI to negatively affect people's privacy. We then present a technical privacy measure that can help bridge the divide between legal and technical thinking with respect to AI and privacy.
The Business Intelligence (BI) paradigm is challenged by emerging use cases such as news and social media analytics in which the source data are unstructured, the analysis metrics are unspecified, and the appropriate visual representations are unsupported by mainstream tools. This case study documents the work undertaken in Microsoft Research to enable these use cases in the Microsoft Power BI product. Our approach comprises: (a) back-end pipelines that use AI to infer navigable data structures from streams of unstructured text, media and metadata; and (b) front-end representations of these structures grounded in the Visual Analytics literature. Through our creation of multiple end-to-end data applications, we learned that representing the varying quality of inferred data structures was crucial for making the use and limitations of AI transparent to users. We conclude with reflections on BI in the age of AI, big data, and democratized access to data analytics.
Undeterred by numerous efforts deployed by antivirus software that shields users from various security threats, ransomware is constantly evolving as technology advances. The impact includes hackers hindering the user's accessibility to their data, and the user will pay ransom to retrieve their data. Ransomware also targets multimillion-dollar organizations, and it can cause colossal data loss. The organizations could face catastrophic consequences, and business operations could be ceased. This research contributes by spreading awareness of ransomware to alert people to tackle ransomware. The solution of this research is the conceptual development of a browser extension that provides assistance to warn users of plausible dangers while surfing the Internet. It allows the users to surf the web safely. Since the contribution of this research is conceptual, we can assume that technology users will adopt the proposed idea to prevent ransomware attacks on their personal computers once the solution is fully implemented in future research.
Large-scale sensing and actuation infrastructures have allowed buildings to achieve significant energy savings; at the same time, these technologies introduce significant privacy risks that must be addressed. In this paper, we present a framework for modeling the trade-off between improved control performance and increased privacy risks due to occupancy sensing. More specifically, we consider occupancy-based HVAC control as the control objective and the location traces of individual occupants as the private variables. Previous studies have shown that individual location information can be inferred from occupancy measurements. To ensure privacy, we design an architecture that distorts the occupancy data in order to hide individual occupant location information while maintaining HVAC performance. Using mutual information between the individual's location trace and the reported occupancy measurement as a privacy metric, we are able to optimally design a scheme to minimize privacy risk subject to a control performance guarantee. We evaluate our framework using real-world occupancy data: first, we verify that our privacy metric accurately assesses the adversary's ability to infer private variables from the distorted sensor measurements; then, we show that control performance is maintained through simulations of building operations using these distorted occupancy readings.
We present OpenFace, our new open-source face recognition system that approaches state-of-the-art accuracy. Integrating OpenFace with inter-frame tracking, we build RTFace, a mechanism for denaturing video streams that selectively blurs faces according to specified policies at full frame rates. This enables privacy management for live video analytics while providing a secure approach for handling retrospective policy exceptions. Finally, we present a scalable, privacy-aware architecture for large camera networks using RTFace.
In machine learning, feature engineering has been a pivotal stage in building a high-quality predictor. Particularly, this work explores the multiple Kernel Discriminant Component Analysis (mKDCA) feature-map and its variants. However, seeking the right subset of kernels for mKDCA feature-map can be challenging. Therefore, we consider the problem of kernel selection, and propose an algorithm based on Differential Mutual Information (DMI) and incremental forward search. DMI serves as an effective metric for selecting kernels, as is theoretically supported by mutual information and Fisher's discriminant analysis. On the other hand, incremental forward search plays a role in removing redundancy among kernels. Finally, we illustrate the potential of the method via an application in privacy-aware classification, and show on three mobile-sensing datasets that selecting an effective set of kernels for mKDCA feature-maps can enhance the utility classification performance, while successfully preserve the data privacy. Specifically, the results show that the proposed DMI forward search method can perform better than the state-of-the-art, and, with much smaller computational cost, can perform as well as the optimal, yet computationally expensive, exhaustive search.
In this paper, we focus on developing a novel mechanism to preserve differential privacy in deep neural networks, such that: (1) The privacy budget consumption is totally independent of the number of training steps; (2) It has the ability to adaptively inject noise into features based on the contribution of each to the output; and (3) It could be applied in a variety of different deep neural networks. To achieve this, we figure out a way to perturb affine transformations of neurons, and loss functions used in deep neural networks. In addition, our mechanism intentionally adds "more noise" into features which are "less relevant" to the model output, and vice-versa. Our theoretical analysis further derives the sensitivities and error bounds of our mechanism. Rigorous experiments conducted on MNIST and CIFAR-10 datasets show that our mechanism is highly effective and outperforms existing solutions.
We propose a privacy-preserving framework for learning visual classifiers by leveraging distributed private image data. This framework is designed to aggregate multiple classifiers updated locally using private data and to ensure that no private information about the data is exposed during and after its learning procedure. We utilize a homomorphic cryptosystem that can aggregate the local classifiers while they are encrypted and thus kept secret. To overcome the high computational cost of homomorphic encryption of high-dimensional classifiers, we (1) impose sparsity constraints on local classifier updates and (2) propose a novel efficient encryption scheme named doublypermuted homomorphic encryption (DPHE) which is tailored to sparse high-dimensional data. DPHE (i) decomposes sparse data into its constituent non-zero values and their corresponding support indices, (ii) applies homomorphic encryption only to the non-zero values, and (iii) employs double permutations on the support indices to make them secret. Our experimental evaluation on several public datasets shows that the proposed approach achieves comparable performance against state-of-the-art visual recognition methods while preserving privacy and significantly outperforms other privacy-preserving methods.
Internet of Things (IoT) devices are getting increasingly popular, becoming a core element for the next generations of informational architectures: smart city, smart factory, smart home, smart health-care and many others. IoT systems are mainly comprised of embedded devices with limited computing capabilities while having a cloud component which processes the data and delivers it to the end-users. IoT devices access the user private data, thus requiring robust security solution which must address features like usability and scalability. In this paper we discuss about an IoT authentication service for smart-home devices using a smart-phone as security anchor, QR codes and attribute based cryptography (ABC). Regarding the fact that in an IoT ecosystem some of the IoT devices and the cloud components may be considered untrusted, we propose a privacy preserving attribute based access control protocol to handle the device authentication to the cloud service. For the smart-phone centric authentication to the cloud component, we employ the FIDO UAF protocol and we extend it, by adding an attributed based privacy preserving component.
An important topic in cybersecurity is validating Active Indicators (AI), which are stimuli that can be implemented in systems to trigger responses from individuals who might or might not be Insider Threats (ITs). The way in which a person responds to the AI is being validated for identifying a potential threat and a non-threat. In order to execute this validation process, it is important to create a paradigm that allows manipulation of AIs for measuring response. The scenarios are posed in a manner that require participants to be situationally aware that they are being monitored and have to act deceptively. In particular, manipulations in the environment should no differences between conditions relative to immersion and ease of use, but the narrative should be the driving force behind non-deceptive and IT responses. The success of the narrative and the simulation environment to induce such behaviors is determined by immersion, usability, and stress response questionnaires, and performance. Initial results of the feasibility to use a narrative reliant upon situation awareness of monitoring and evasion are discussed.
- « first
- ‹ previous
- 1
- 2
- 3