Visible to the public Biblio

Filters: Keyword is Wireless Sensor Network  [Clear All Filters]
2018-10-26
Bhoyar, D. G., Yadav, U..  2017.  Review of jamming attack using game theory. 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS). :1–4.

The paper presents the study of protecting wireless sensor network (WSNs) by using game theory for malicious node. By means of game theory the malicious attack nodes can be effectively modeled. In this research there is study on different game theoretic strategies for WSNs. Wireless sensor network are made upon the open shared medium which make easy to built attack. Jamming is the most serious security threats for information preservation. The key purpose of this paper is to present a general synopsis of jamming technique, a variety of types of jammers and its prevention technique by means of game theory. There is a network go through from numerous kind of external and internal attack. The jamming of attack that can be taking place because of the high communication inside the network execute by the nodes in the network. As soon as the weighty communications raise the power expenditure and network load also increases. In research work a game theoretic representation is define for the safe communication on the network.

2018-08-23
Chaturvedi, P., Daniel, A. K..  2017.  Trust aware node scheduling protocol for target coverage using rough set theory. 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT). :511–514.

Wireless sensor networks have achieved the substantial research interest in the present time because of their unique features such as fault tolerance, autonomous operation etc. The coverage maximization while considering the resource scarcity is a crucial problem in the wireless sensor networks. The approaches which address these problems and maximize the network lifetime are considered prominent. The node scheduling is such mechanism to address this issue. The scheduling strategy which addresses the target coverage problem based on coverage probability and trust values is proposed in Energy Efficient Coverage Protocol (EECP). In this paper the optimized decision rules is obtained by using the rough set theory to determine the number of active nodes. The results show that the proposed extension results in the lesser number of decision rules to consider in determination of node states in the network, hence it improves the network efficiency by reducing the number of packets transmitted and reducing the overhead.

2018-06-20
Ranjana, S. A., Sterlin, C. L. S., Benita, W. V., Sam, B. B..  2017.  Secure and concealment in cluster based framework on vehicular networks. 2017 International Conference on Information Communication and Embedded Systems (ICICES). :1–6.

Vehicular ad hoc network is based on MANET all the vehicle to vehicle and vehicle roadside are connected to the wireless sensor network. In this paper mainly discuss on the security in the VANET in the lightweight cloud environment. Moving vehicle on the roadside connected through the sensor nodes and to provide communication between the vehicles and directly connected to the centralized environment. We propose a new approach to share the information in the VANET networks in secure manner through cloud.

2018-06-11
Balaji, V. S., Reebha, S. A. A. B., Saravanan, D..  2017.  Audit-based efficient accountability for node misbehavior in wireless sensor network. 2017 International Conference on IoT and Application (ICIOT). :1–10.

Wireless sensor network operate on the basic underlying assumption that all participating nodes fully collaborate in self-organizing functions. However, performing network functions consumes energy and other resources. Therefore, some network nodes may decide against cooperating with others. Node misbehavior due to selfish or malicious reasons or faulty nodes can significantly degrade the performance of mobile ad-hoc networks. To cope with misbehavior in such self-organized networks, nodes need to be able to automatically adapt their strategy to changing levels of cooperation. The problem of identifying and isolating misbehaving nodes that refuses to forward packets in multi-hop ad hoc networks. a comprehensive system called Audit-based Misbehavior Detection (AMD) that effectively and efficiently isolates both continuous and selective packet droppers. The AMD system integrates reputation management, trustworthy route discovery, and identification of misbehaving nodes based on behavioral audits. AMD evaluates node behavior on a per-packet basis, without employing energy-expensive overhearing techniques or intensive acknowledgment schemes. AMD can detect selective dropping attacks even if end-to-end traffic is encrypted and can be applied to multi-channel networks.

2018-05-16
Patra, M. K..  2017.  An architecture model for smart city using Cognitive Internet of Things (CIoT). 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1–6.

In this paper, a distributed architecture for the implementation of smart city has been proposed to facilitate various smart features like solid waste management, efficient urban mobility and public transport, smart parking, robust IT connectivity, safety and security of citizens and a roadmap for achieving it. How massive volume of IoT data can be analyzed and a layered architecture of IoT is explained. Why data integration is important for analyzing and processing of data collected by the different smart devices like sensors, actuators and RFIDs is discussed. The wireless sensor network can be used to sense the data from various locations but there has to be more to it than stuffing sensors everywhere for everything. Why only the sensor is not sufficient for data collection and how human beings can be used to collect data is explained. There is some communication protocols between the volunteers engaged in collecting data to restrict the sharing of data and ensure that the target area is covered with minimum numbers of volunteers. Every volunteer should cover some predefined area to collect data. Then the proposed architecture model is having one central server to store all data in a centralized server. The data processing and the processing of query being made by the user is taking place in centralized server.

2018-04-11
Jedidi, A., Mohammad, A..  2017.  History Trust Routing Algorithm to Improve Efficiency and Security in Wireless Sensor Network. 2017 14th International Multi-Conference on Systems, Signals Devices (SSD). :750–754.

Wireless sensor network (WSN) considered as one of the important technology in our days. Low-cost, low-power and multifunction based on these characteristics WSN become more and more apply in many areas. However, one of the major challenges in WSN is the security. Indeed, the usual method of security cannot be applied in WSN because the technological limit of the different components. In this context, we propose a new method to establish a secure route between the source node and the Sink node. Particularly, our method based on routing trust history table (RTH) and trust path routing algorithm (TPR). Therefore, our method offers a high level of security for the routing path with efficiency and stability in the network.

2018-04-02
Kumar, V., Kumar, A., Singh, M..  2017.  Boosting Anonymity in Wireless Sensor Networks. 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC). :344–348.

The base station (BS) is the main device in a wireless sensor network (WSN) and used to collect data from all the sensor nodes. The information of the whole network is stored in the BS and hence it is always targeted by the adversaries who want to interrupt the operation of the network. The nodes transmit their data to the BS using multi-hop technique and hence form an eminent traffic pattern that can be easily observed by a remote adversary. The presented research aims to increase the anonymity of the BS. The proposed scheme uses a mobile BS and ring nodes to complete the above mentioned objective. The simulation results show that the proposed scheme has superior outcomes as compared to the existing techniques.

2018-03-19
Alimadadi, Mohammadreza, Stojanovic, Milica, Closas, Pau.  2017.  Object Tracking Using Modified Lossy Extended Kalman Filter. Proceedings of the International Conference on Underwater Networks & Systems. :7:1–7:5.

We address the problem of object tracking in an underwater acoustic sensor network in which distributed nodes measure the strength of field generated by moving objects, encode the measurements into digital data packets, and transmit the packets to a fusion center in a random access manner. We allow for imperfect communication links, where information packets may be lost due to noise and collisions. The packets that are received correctly are used to estimate the objects' trajectories by employing an extended Kalman Filter, where provisions are made to accommodate a randomly changing number of obseravtions in each iteration. An adaptive rate control scheme is additionally applied to instruct the sensor nodes on how to adjust their transmission rate so as to improve the location estimation accuracy and the energy efficiency of the system. By focusing explicitly on the objects' locations, rather than working with a pre-specified grid of potential locations, we resolve the spatial quantization issues associated with sparse identification methods. Finally, we extend the method to address the possibility of objects entering and departing the observation area, thus improving the scalability of the system and relaxing the requirement for accurate knowledge of the objects' initial locations. Performance is analyzed in terms of the mean-squared localization error and the trade-offs imposed by the limited communication bandwidth.

2018-03-05
Mahfood Haddad, Yara, Ali, Hesham H..  2017.  An Evolutionary Graph-Based Approach for Managing Self-Organized IoT Networks. Proceedings of the 15th ACM International Symposium on Mobility Management and Wireless Access. :113–119.

Wireless sensor networks (WSNs) are one of the most rapidly developing information technologies and promise to have a variety of applications in Next Generation Networks (NGNs) including the IoT. In this paper, the focus will be on developing new methods for efficiently managing such large-scale networks composed of homogeneous wireless sensors/devices in urban environments such as homes, hospitals, stores and industrial compounds. Heterogeneous networks were proposed in a comparison with the homogeneous ones. The efficiency of these networks will depend on several optimization parameters such as the redundancy, as well as the percentages of coverage and energy saved. We tested the algorithm using different densities of sensors in the network and different values of tuning parameters for the optimization parameters. Obtained results show that our proposed algorithm performs better than the other greedy algorithm. Moreover, networks with more sensors maintain more redundancy and better percentage of coverage. However, it wastes more energy. The same method will be used for heterogeneous wireless sensors networks where devices have different characteristics and the network acts more efficient.

2018-01-16
Nagar, S., Rajput, S. S., Gupta, A. K., Trivedi, M. C..  2017.  Secure routing against DDoS attack in wireless sensor network. 2017 3rd International Conference on Computational Intelligence Communication Technology (CICT). :1–6.

Wireless sensor network is a low cost network to solve many of the real world problems. These sensor nodes used to deploy in the hostile or unattended areas to sense and monitor the atmospheric situations such as motion, pressure, sound, temperature and vibration etc. The sensor nodes have low energy and low computing power, any security scheme for wireless sensor network must not be computationally complex and it should be efficient. In this paper we introduced a secure routing protocol for WSNs, which is able to prevent the network from DDoS attack. In our methodology we scan the infected nodes using the proposed algorithm and block that node from any further activities in the network. To protect the network we use intrusion prevention scheme, where specific nodes of the network acts as IPS node. These nodes operate in their radio range for the region of the network and scan the neighbors regularly. When the IPS node find a misbehavior node which is involves in frequent message passing other than UDP and TCP messages, IPS node blocks the infected node and also send the information to all genuine sender nodes to change their routes. All simulation work has been done using NS 2.35. After simulation the proposed scheme gives feasible results to protect the network against DDoS attack. The performance parameters have been improved after applying the security mechanism on an infected network.

2018-01-10
Hamasaki, J., Iwamura, K..  2017.  Geometric group key-sharing scheme using euclidean distance. 2017 14th IEEE Annual Consumer Communications Networking Conference (CCNC). :1004–1005.

A wireless sensor network (WSN) is composed of sensor nodes and a base station. In WSNs, constructing an efficient key-sharing scheme to ensure a secure communication is important. In this paper, we propose a new key-sharing scheme for groups, which shares a group key in a single broadcast without being dependent on the number of nodes. This scheme is based on geometric characteristics and has information-theoretic security in the analysis of transmitted data. We compared our scheme with conventional schemes in terms of communication traffic, computational complexity, flexibility, and security, and the results showed that our scheme is suitable for an Internet-of-Things (IoT) network.

2017-12-20
Salleh, A., Mamat, K., Darus, M. Y..  2017.  Integration of wireless sensor network and Web of Things: Security perspective. 2017 IEEE 8th Control and System Graduate Research Colloquium (ICSGRC). :138–143.
Wireless Sensor Network (WSN) are spread everywhere throughout the world and are ordinarily used to gather physical data from the encompassing scene. WSN play a focal part in the Internet of Things (IoT) vision. WSN is rising as a noticeable component in the middleware connecting together the Internet of Things (IoT) and the Web of Things (WoT). But the integration of WSN to WoT brings new challenges that cannot be solved in a satisfactory way with traditional layer of security. This paper examined the security issue of integration between WSN and WoT, aiming to shed light on how the WSN and WoT security issue are understood and applied, both in academia and industries. This paper introduces security perfective of integration WSN to WoT which offers capabilities to identify and connect worldwide physical objects into a unified system. As a part of the integration, serious concerns are raised over access of personal information pertaining to device (smart thing) and individual privacy. The motivation of this paper is to summarizes the security threats of the integration and suggestion to mitigate the threat.
Kim, M., Cho, H..  2017.  Secure Data Collection in Spatially Clustered Wireless Sensor Networks. 2017 25th International Conference on Systems Engineering (ICSEng). :268–276.
A wireless sensor network (WSN) can provide a low cost and flexible solution to sensing and monitoring for large distributed applications. To save energy and prolong the network lifetime, the WSN is often partitioned into a set of spatial clusters. Each cluster includes sensor nodes with similar sensing data, and only a few sensor nodes (samplers) report their sensing data to a base node. Then the base node may predict the missed data of non-samplers using the spatial correlation between sensor nodes. The problem is that the WSN is vulnerable to internal security threat such as node compromise. If the samplers are compromised and report incorrect data intentionally, then the WSN should be contaminated rapidly due to the process of data prediction at the base node. In this paper, we propose three algorithms to detect compromised samplers for secure data collection in the WSN. The proposed algorithms leverage the unique property of spatial clustering to alleviate the overhead of compromised node detection. Experiment results indicate that the proposed algorithms can identify compromised samplers with a high accuracy and low energy consumption when as many as 50% sensor nodes are misbehaving.
2017-12-12
Jiang, J., Chaczko, Z., Al-Doghman, F., Narantaka, W..  2017.  New LQR Protocols with Intrusion Detection Schemes for IOT Security. 2017 25th International Conference on Systems Engineering (ICSEng). :466–474.

Link quality protocols employ link quality estimators to collect statistics on the wireless link either independently or cooperatively among the sensor nodes. Furthermore, link quality routing protocols for wireless sensor networks may modify an estimator to meet their needs. Link quality estimators are vulnerable against malicious attacks that can exploit them. A malicious node may share false information with its neighboring sensor nodes to affect the computations of their estimation. Consequently, malicious node may behave maliciously such that its neighbors gather incorrect statistics about their wireless links. This paper aims to detect malicious nodes that manipulate the link quality estimator of the routing protocol. In order to accomplish this task, MINTROUTE and CTP routing protocols are selected and updated with intrusion detection schemes (IDSs) for further investigations with other factors. It is proved that these two routing protocols under scrutiny possess inherent susceptibilities, that are capable of interrupting the link quality calculations. Malicious nodes that abuse such vulnerabilities can be registered through operational detection mechanisms. The overall performance of the new LQR protocol with IDSs features is experimented, validated and represented via the detection rates and false alarm rates.

2017-11-20
Li, Guyue, Hu, Aiqun.  2016.  Virtual MIMO-based cooperative beamforming and jamming scheme for the clustered wireless sensor network security. 2016 2nd IEEE International Conference on Computer and Communications (ICCC). :2246–2250.

This paper considers the physical layer security for the cluster-based cooperative wireless sensor networks (WSNs), where each node is equipped with a single antenna and sensor nodes cooperate at each cluster of the network to form a virtual multi-input multi-output (MIMO) communication architecture. We propose a joint cooperative beamforming and jamming scheme to enhance the security of the WSNs where a part of sensor nodes in Alice's cluster are deployed to transmit beamforming signals to Bob while a part of sensor nodes in Bob's cluster are utilized to jam Eve with artificial noise. The optimization of beamforming and jamming vectors to minimize total energy consumption satisfying the quality-of-service (QoS) constraints is a NP-hard problem. Fortunately, through reformulation, the problem is proved to be a quadratically constrained quadratic problem (QCQP) which can be solved by solving constraint integer programs (SCIP) algorithm. Finally, we give the simulation results of our proposed scheme.

2017-10-03
Enguehard, Marcel, Droms, Ralph, Rossi, Dario.  2016.  SLICT: Secure Localized Information Centric Things. Proceedings of the 3rd ACM Conference on Information-Centric Networking. :255–260.

While the potential advantages of geographic forwarding in wireless sensor networks (WSN) have been demonstrated for a while now, research in applying Information Centric Networking (ICN) has only gained momentum in the last few years. In this paper, we bridge these two worlds by proposing an ICN-compliant and secure implementation of geographic forwarding for ICN. We implement as a proof of concept the Greedy Perimeter Stateless Routing (GPSR) algorithm and compare its performance to that of vanilla ICN forwarding. We also evaluate the cost of security in 802.15.4 networks in terms of energy, memory and CPU footprint. We show that in sparse but large networks, GPSR outperforms vanilla ICN forwarding in both memory footprint and CPU consumption. However, GPSR is more energy intensive because of the cost of communications.

2017-09-19
Selvi, M., Logambigai, R., Ganapathy, S., Ramesh, L. Sai, Nehemiah, H. Khanna, Arputharaj, Kannan.  2016.  Fuzzy Temporal Approach for Energy Efficient Routing in WSN. Proceedings of the International Conference on Informatics and Analytics. :117:1–117:5.

Wireless sensor networks (WSN) are useful in many practical applications including agriculture, military and health care systems. However, the nodes in a sensor network are constrained by energy and hence the lifespan of such sensor nodes are limited due to the energy problem. Temporal logics provide a facility to predict the lifetime of sensor nodes in a WSN using the past and present traffic and environmental conditions. Moreover, fuzzy logic helps to perform inference under uncertainty. When fuzzy logic is combined with temporal constraints, it increases the accuracy of decision making with qualitative information. Hence, a new data collection and cluster based energy efficient routing algorithm is proposed in this paper by extending the existing LEACH protocol. Extensions are provided in this work by including fuzzy temporal rules for making data collection and routing decisions. Moreover, this proposed work uses fuzzy temporal logic for forming clusters and to perform cluster based routing. The main difference between other cluster based routing protocols and the proposed protocol is that two types of cluster heads are used here, one for data collection and other for routing. In this research work we conducted an experiment and it is observed that the proposed fuzzy cluster based routing algorithm with temporal constrains enhances the network life time reduces the energy consumption and enhances the quality of service by increasing the packet delivery ratio by reducing the delay.

2017-06-05
Habeeb, Ibtisam Joda, Muhajjar, Ra'ad A..  2016.  Secured Wireless Sensor Network Using Improved Key Management. Proceedings of the Fifth International Conference on Network, Communication and Computing. :302–305.

Wireless Sensor Network (WSN) consists of a numerous of small devices called sensor which has a limitation in resources such as low energy, memory, and computation. Sensors deployed in a harsh environment and vulnerable to various security issues and due to the resource restriction in a sensor, key management and provide robust security in this type of networks is a challenge. keys may be used in two ways in cryptography is symmetric or asymmetric, asymmetric is required more communication, memory, and computing when compared with symmetric, so it is not appropriate for WSN. In this paper, key management scheme based on symmetric keys has been proposed where each node uses pseudo-random generator (PRNG)to generate key that is shared with base station based on pre-distributed initial key and CBC - RC5 to reached to confidently, integrity and authentication.

2017-04-20
Hilal, Allaa R., Basir, Otman.  2016.  A Collaborative Energy-Aware Sensor Management System Using Team Theory. ACM Trans. Embed. Comput. Syst.. 15:52:1–52:26.

With limited battery supply, power is a scarce commodity in wireless sensor networks. Thus, to prolong the lifetime of the network, it is imperative that the sensor resources are managed effectively. This task is particularly challenging in heterogeneous sensor networks for which decisions and compromises regarding sensing strategies are to be made under time and resource constraints. In such networks, a sensor has to reason about its current state to take actions that are deemed appropriate with respect to its mission, its energy reserve, and the survivability of the overall network. Sensor Management controls and coordinates the use of the sensory suites in a manner that maximizes the success rate of the system in achieving its missions. This article focuses on formulating and developing an autonomous energy-aware sensor management system that strives to achieve network objectives while maximizing its lifetime. A team-theoretic formulation based on the Belief-Desire-Intention (BDI) model and the Joint Intention theory is proposed as a mechanism for effective and energy-aware collaborative decision-making. The proposed system models the collective behavior of the sensor nodes using the Joint Intention theory to enhance sensors’ collaboration and success rate. Moreover, the BDI modeling of the sensor operation and reasoning allows a sensor node to adapt to the environment dynamics, situation-criticality level, and availability of its own resources. The simulation scenario selected in this work is the surveillance of the Waterloo International Airport. Various experiments are conducted to investigate the effect of varying the network size, number of threats, threat agility, environment dynamism, as well as tracking quality and energy consumption, on the performance of the proposed system. The experimental results demonstrate the merits of the proposed approach compared to the state-of-the-art centralized approach adapted from Atia et al. [2011] and the localized approach in Hilal and Basir [2015] in terms of energy consumption, adaptability, and network lifetime. The results show that the proposed approach has 12 × less energy consumption than that of the popular centralized approach.

2017-03-29
Nisha, Dave, M..  2016.  Storage as a parameter for classifying dynamic key management schemes proposed for WSNs. 2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT). :51–56.

Real world applications of Wireless Sensor Networks such as border control, healthcare monitoring and target tracking require secure communications. Thus, during WSN setup, one of the first requirements is to distribute the keys to the sensor nodes which can be later used for securing the messages exchanged between sensors. The key management schemes in WSN secure the communication between a pair or a group of nodes. However, the storage capacity of the sensor nodes is limited which makes storage requirement as an important parameter for the evaluation of key management schemes. This paper classifies the existing key management schemes proposed for WSNs into three categories: storage inefficient, storage efficient and highly storage efficient key management schemes.

2017-03-08
Ding, C., Peng, J..  2015.  A hopping sensor deployment scheme based on virtual forces. 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO). :988–993.

Wireless sensor networks have been widely utilized in many applications such as environment monitoring and controlling. Appropriate sensor deployment scheme to achieve the maximal coverage is crucial for effectiveness of sensor network. In this paper, we study coverage optimization problem with hopping sensors. Although similar problem has been investigated when each mobile sensor has continuous dynamics, the problem is different for hopping sensor which has discrete and constraint dynamics. Based on the characteristics of hopping, we obtain dynamics equation of hopping sensors. Then we propose an enhanced virtual force algorithm as a deployment scheme to improve the coverage. A combination of attractive and repulsive forces generated by Voronoi neighbor sensors, obstacles and the centroid of local Voronoi cell is used to determine the motion paths for hopping sensors. Furthermore, a timer is designed to adjust the movement sequence of sensors, such that unnecessary movements can be reduced. Simulation results show that optimal coverage can be accomplished by hopping sensors in an energy efficient manner.

2017-03-07
Lau, Billy Pik Lik, Chaturvedi, Tanmay, Ng, Benny Kai Kiat, Li, Kai, Hasala, Marakkalage S., Yuen, Chau.  2016.  Spatial and Temporal Analysis of Urban Space Utilization with Renewable Wireless Sensor Network. Proceedings of the 3rd IEEE/ACM International Conference on Big Data Computing, Applications and Technologies. :133–142.

Space utilization are important elements for a smart city to determine how well public space are being utilized. Such information could also provide valuable feedback to the urban developer on what are the factors that impact space utilization. The spatial and temporal information for space utilization can be studied and further analyzed to generate insights about that particular space. In our research context, these elements are translated to part of big data and Internet of things (IoT) to eliminate the need of on site investigation. However, there are a number of challenges for large scale deployment, eg. hardware cost, computation capability, communication bandwidth, scalability, data fragmentation, and resident privacy etc. In this paper, we designed and prototype a Renewable Wireless Sensor Network (RWSN), which addressed the aforementioned challenges. Finally, analyzed results based on initial data collected is presented.

2015-05-06
Macedonio, Damiano, Merro, Massimo.  2014.  A Semantic Analysis of Key Management Protocols for Wireless Sensor Networks. Sci. Comput. Program.. 81:53–78.

Gorrieri and Martinelli’s timed Generalized Non-Deducibility on Compositions () schema is a well-known general framework for the formal verification of security protocols in a concurrent scenario. We generalise the  schema to verify wireless network security protocols. Our generalisation relies on a simple timed broadcasting process calculus whose operational semantics is given in terms of a labelled transition system which is used to derive a standard simulation theory. We apply our  framework to perform a security analysis of three well-known key management protocols for wireless sensor networks: , LEAP+ and LiSP.

Lalitha, T., Devi, A.J..  2014.  Security in Wireless Sensor Networks: Key Management Module in EECBKM. Computing and Communication Technologies (WCCCT), 2014 World Congress on. :306-308.

Wireless Sensor Networks (WSN) is vulnerable to node capture attacks in which an attacker can capture one or more sensor nodes and reveal all stored security information which enables him to compromise a part of the WSN communications. Due to large number of sensor nodes and lack of information about deployment and hardware capabilities of sensor node, key management in wireless sensor networks has become a complex task. Limited memory resources and energy constraints are the other issues of key management in WSN. Hence an efficient key management scheme is necessary which reduces the impact of node capture attacks and consume less energy. By simulation results, we show that our proposed technique efficiently increases packet delivery ratio with reduced energy consumption.

Sakharkar, S.M., Mangrulkar, R.S., Atique, M..  2014.  A survey: A secure routing method for detecting false reports and gray-hole attacks along with Elliptic Curve Cryptography in wireless sensor networks. Electrical, Electronics and Computer Science (SCEECS), 2014 IEEE Students' Conference on. :1-5.

Wireless Sensor Networks (WSNs) are used in many applications in military, environmental, and health-related areas. These applications often include the monitoring of sensitive information such as enemy movement on the battlefield or the location of personnel in a building. Security is important in WSNs. However, WSNs suffer from many constraints, including low computation capability, small memory, limited energy resources, susceptibility to physical capture, and the use of insecure wireless communication channels. These constraints make security in WSNs a challenge. In this paper, we try to explore security issue in WSN. First, the constraints, security requirements and attacks with their corresponding countermeasures in WSNs are explained. Individual sensor nodes are subject to compromised security. An adversary can inject false reports into the networks via compromised nodes. Furthermore, an adversary can create a Gray hole by compromised nodes. If these two kinds of attacks occur simultaneously in a network, some of the existing methods fail to defend against those attacks. The Ad-hoc On Demand Distance (AODV) Vector scheme for detecting Gray-Hole attack and Statistical En-Route Filtering is used for detecting false report. For increasing security level, the Elliptic Curve Cryptography (ECC) algorithm is used. Simulations results obtain so far reduces energy consumption and also provide greater network security to some extent.