Visible to the public Biblio

Found 108 results

Filters: Keyword is Vulnerability  [Clear All Filters]
2020-03-23
Bansal, Saumya, Baliyan, Niyati.  2019.  Evaluation of Collaborative Filtering Based Recommender Systems against Segment-Based Shilling Attacks. 2019 International Conference on Computing, Power and Communication Technologies (GUCON). :110–114.
Collaborative filtering (CF) is a successful and hence most widely used technique for recommender systems. However, it is vulnerable to shilling attack due to its open nature, which results in generating biased or false recommendations for users. In literature, segment attack (push attack) has been widely studied and investigated while rare studies have been performed on nuke attack, to the best of our knowledge. Further, the robustness of binary collaborative filtering and hybrid approach has not been investigated against segment-focused attack. In this paper, from the perspective of robustness, binary collaborative filtering, hybrid approach, stand-alone rating user-based, and stand-alone rating item- based recommendation have been evaluated against segment attack on a large dataset (100K ratings) which is found to be more successful as it attacks target set of items. With an aim to find an approach which reflects a higher accuracy in recommending items and is less vulnerable to segment-based attack, the possibility of any relationship between accuracy and vulnerability of six CF approaches were studied. Such an approach needs to be re-examined by the researchers marking the future of recommender system (RS). Experimental results show negligible positive correlation between accuracy and vulnerability of techniques. Publicly available dataset namely MovieLens was used for conducting experiments. Robustness and accuracy of CF techniques were calculated using prediction shift and F-measure, respectively.
2020-03-09
Munaiah, Nuthan, Meneely, Andrew.  2019.  Data-Driven Insights from Vulnerability Discovery Metrics. 2019 IEEE/ACM Joint 4th International Workshop on Rapid Continuous Software Engineering and 1st International Workshop on Data-Driven Decisions, Experimentation and Evolution (RCoSE/DDrEE). :1–7.

Software metrics help developers discover and fix mistakes. However, despite promising empirical evidence, vulnerability discovery metrics are seldom relied upon in practice. In prior research, the effectiveness of these metrics has typically been expressed using precision and recall of a prediction model that uses the metrics as explanatory variables. These prediction models, being black boxes, may not be perceived as useful by developers. However, by systematically interpreting the models and metrics, we can provide developers with nuanced insights about factors that have led to security mistakes in the past. In this paper, we present a preliminary approach to using vulnerability discovery metrics to provide insightful feedback to developers as they engineer software. We collected ten metrics (churn, collaboration centrality, complexity, contribution centrality, nesting, known offender, source lines of code, \# inputs, \# outputs, and \# paths) from six open-source projects. We assessed the generalizability of the metrics across two contextual dimensions (application domain and programming language) and between projects within a domain, computed thresholds for the metrics using an unsupervised approach from literature, and assessed the ability of these unsupervised thresholds to classify risk from historical vulnerabilities in the Chromium project. The observations from this study feeds into our ongoing research to automatically aggregate insights from the various analyses to generate natural language feedback on security. We hope that our approach to generate automated feedback will accelerate the adoption of research in vulnerability discovery metrics.

2020-03-02
Livshitz, Ilva I., Lontsikh, Pawel A., Lontsiklr, Natalia P., Karascv, Sergey, Golovina, Elena.  2019.  The Actual Problems of IT-Security Process Assurance. 2019 International Conference "Quality Management, Transport and Information Security, Information Technologies" (IT QM IS). :140–144.

The article deals with the aspects of IT-security of business processes, using a variety of methodological tools, including Integrated Management Systems. Currently, all IMS consist of at least 2 management systems, including the IT-Security Management System. Typically, these IMS cover biggest part of the company business processes, but in practice, there are examples of different scales, even within a single facility. However, it should be recognized that the total number of such projects both in the Russian Federation and in the World is small. The security of business processes will be considered on the example of the incident of Norsk Hydro. In the article the main conclusions are given to confirm the possibility of security, continuity and recovery of critical business processes on the example of this incident.

Babkin, Sergey, Epishkina, Anna.  2019.  Authentication Protocols Based on One-Time Passwords. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :1794–1798.
Nowadays one-time passwords are used in a lot of areas of information technologies including e-commerce. A few vulnerabilities in authentication protocols based on one-time passwords are widely known. In current work, we analyze authentication protocols based on one-time passwords and their vulnerabilities. Both simple and complicated protocols which are implementing cryptographic algorithms are reviewed. For example, an analysis of relatively old Lamport's hash-chain protocol is provided. At the same time, we examine HOTP and TOTP protocols which are actively used nowadays. The main result of the work are conclusions about the security of reviewed protocols based on one-time passwords.
2020-02-17
Yin, Mingyong, Wang, Qixu, Cao, Mingsheng.  2019.  An Attack Vector Evaluation Method for Smart City Security Protection. 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–7.

In the network security risk assessment on critical information infrastructure of smart city, to describe attack vectors for predicting possible initial access is a challenging task. In this paper, an attack vector evaluation model based on weakness, path and action is proposed, and the formal representation and quantitative evaluation method are given. This method can support the assessment of attack vectors based on known and unknown weakness through combination of depend conditions. In addition, defense factors are also introduced, an attack vector evaluation model of integrated defense is proposed, and an application example of the model is given. The research work in this paper can provide a reference for the vulnerability assessment of attack vector.

Letychevskyi, Oleksandr.  2019.  Two-Level Algebraic Method for Detection of Vulnerabilities in Binary Code. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 2:1074–1077.
This study introduces formal methods for detection of vulnerabilities in binary code. It considers the transformation of binary code into behavior algebra expressions and formalization of vulnerabilities. The detection method has two levels: behavior matching and symbolic execution with vulnerability pattern matching. This enables more efficient performance.
2020-02-10
Zhang, Kevin.  2019.  A Machine Learning Based Approach to Identify SQL Injection Vulnerabilities. 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). :1286–1288.

This paper presents a machine learning classifier designed to identify SQL injection vulnerabilities in PHP code. Both classical and deep learning based machine learning algorithms were used to train and evaluate classifier models using input validation and sanitization features extracted from source code files. On ten-fold cross validations a model trained using Convolutional Neural Network(CNN) achieved the highest precision (95.4%), while a model based on Multilayer Perceptron(MLP) achieved the highest recall (63.7%) and the highest f-measure (0.746).

2020-01-28
Monaco, John V..  2019.  Feasibility of a Keystroke Timing Attack on Search Engines with Autocomplete. 2019 IEEE Security and Privacy Workshops (SPW). :212–217.
Many websites induce the browser to send network traffic in response to user input events. This includes websites with autocomplete, a popular feature on search engines that anticipates the user's query while they are typing. Websites with this functionality require HTTP requests to be made as the query input field changes, such as when the user presses a key. The browser responds to input events by generating network traffic to retrieve the search predictions. The traffic emitted by the client can expose the timings of keyboard input events which may lead to a keylogging side channel attack whereby the query is revealed through packet inter-arrival times. We investigate the feasibility of such an attack on several popular search engines by characterizing the behavior of each website and measuring information leakage at the network level. Three out of the five search engines we measure preserve the mutual information between keystrokes and timings to within 1% of what it is on the host. We describe the ways in which two search engines mitigate this vulnerability with minimal effects on usability.
2020-01-27
Syed, Shafaque Fatma, Ahmed, Aamir, D'mello, Gavin, Ansari, Zeeshan.  2019.  Removal of Web Application Vulnerabilities using Taint Analyzer and Code Corrector. 2019 International Conference on Nascent Technologies in Engineering (ICNTE). :1–7.
Security has been a challenging aspect recently in the field of Web Development. A failure to obtain security in web applications may lead to complete destruction of the web application or may cause some loss to the user or the owner. To tackle this, a huge research on how to secure a web app has been going on for quite some time, yet to achieve security in today's modern era is a very difficult and no less than a challenge for web applications. All these things lead only to a vulnerable/faulty source code, formulated in coding such as PHP. Static Source Code analysis (SCSA) tools tend to give a solution to detect vulnerabilities, but they tend to detect vulnerabilities which actually are false positives, which leads to excess code reexamination. The proposed system will tackle the current situation of SCSA. This will be achieved by two additional modules to SCSA i.e. Taint analysis with False Positive Predictor which will detect and segregate the true vulnerable code from false positives respectively. The proposed system will be used by the Web Application programmers during testing of web application.
2019-12-16
Zubarev, Dmytro, Skarga-Bandurova, Inna.  2019.  Cross-Site Scripting for Graphic Data: Vulnerabilities and Prevention. 2019 10th International Conference on Dependable Systems, Services and Technologies (DESSERT). :154–160.

In this paper, we present an overview of the problems associated with the cross-site scripting (XSS) in the graphical content of web applications. The brief analysis of vulnerabilities for graphical files and factors responsible for making SVG images vulnerable to XSS attacks are discussed. XML treatment methods and their practical testing are performed. As a result, the set of rules for protecting the graphic content of the websites and prevent XSS vulnerabilities are proposed.

2019-12-09
Tucker, Scot.  2018.  Engineering Trust: A Graph-Based Algorithm for Modeling, Validating, and Evaluating Trust. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1–9.
Trust is an important topic in today's interconnected world. Breaches of trust in today's systems has had profound effects upon us all, and they are very difficult and costly to fix especially when caused by flaws in the system's architecture. Trust modeling can expose these types of issues, but modeling trust in complex multi-tiered system architectures can be very difficult. Often experts have differing views of trust and how it applies to systems within their domain. This work presents a graph-based modeling methodology that normalizes the application of trust across disparate system domains allowing the modeling of complex intersystem trust relationships. An algorithm is proposed that applies graph theory to model, validate and evaluate trust in system architectures. Also, it provides the means to apply metrics to compare and prioritize the effectiveness of trust management in system and component architectures. The results produced by the algorithm can be used in conjunction with systems engineering processes to ensure both trust and the efficient use of resources.
2019-12-02
Ibarra, Jaime, Javed Butt, Usman, Do, Anh, Jahankhani, Hamid, Jamal, Arshad.  2019.  Ransomware Impact to SCADA Systems and its Scope to Critical Infrastructure. 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3). :1–12.
SCADA systems are being constantly migrated to modern information and communication technologies (ICT) -based systems named cyber-physical systems. Unfortunately, this allows attackers to execute exploitation techniques into these architectures. In addition, ransomware insertion is nowadays the most popular attacking vector because it denies the availability of critical files and systems until attackers receive the demanded ransom. In this paper, it is analysed the risk impact of ransomware insertion into SCADA systems and it is suggested countermeasures addressed to the protection of SCADA systems and its components to reduce the impact of ransomware insertion.
2019-11-12
Ferenc, Rudolf, Heged\H us, Péter, Gyimesi, Péter, Antal, Gábor, Bán, Dénes, Gyimóthy, Tibor.  2019.  Challenging Machine Learning Algorithms in Predicting Vulnerable JavaScript Functions. 2019 IEEE/ACM 7th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE). :8-14.

The rapid rise of cyber-crime activities and the growing number of devices threatened by them place software security issues in the spotlight. As around 90% of all attacks exploit known types of security issues, finding vulnerable components and applying existing mitigation techniques is a viable practical approach for fighting against cyber-crime. In this paper, we investigate how the state-of-the-art machine learning techniques, including a popular deep learning algorithm, perform in predicting functions with possible security vulnerabilities in JavaScript programs. We applied 8 machine learning algorithms to build prediction models using a new dataset constructed for this research from the vulnerability information in public databases of the Node Security Project and the Snyk platform, and code fixing patches from GitHub. We used static source code metrics as predictors and an extensive grid-search algorithm to find the best performing models. We also examined the effect of various re-sampling strategies to handle the imbalanced nature of the dataset. The best performing algorithm was KNN, which created a model for the prediction of vulnerable functions with an F-measure of 0.76 (0.91 precision and 0.66 recall). Moreover, deep learning, tree and forest based classifiers, and SVM were competitive with F-measures over 0.70. Although the F-measures did not vary significantly with the re-sampling strategies, the distribution of precision and recall did change. No re-sampling seemed to produce models preferring high precision, while re-sampling strategies balanced the IR measures.

2019-09-05
Qiu, Yanbin, Liu, Yanhua, Li, Shijin.  2018.  A Method of Cyber Risk Control Node Selection Based on Game Theory. Proceedings of the 8th International Conference on Communication and Network Security. :32-36.

For the occurrence of network attacks, the most important thing for network security managers is how to conduct attack security defenses under low-risk control. And in the attack risk control, the first and most important step is to choose the defense node of risk control. In this paper, aiming to solve the problem of network attack security risk control under complex networks, we propose a game attack risk control node selection method based on game theory. The method utilizes the relationship between the vulnerabilities and analyzes the vulnerability intent information of the complex network to construct an attack risk diffusion network. In order to truly reflect the different meanings of each node in the attack risk diffusion network for attack and defense, this paper uses the host vulnerability attack and defense income evaluation calculation to give each node in the network its offensive and defensive income. According to the above-mentioned attack risk spread network of offensive and defensive gains, this paper combines game theory and maximum benefit ideas to select the best Top defense node information. In this paper, The method proposed in this paper can be used to select network security risk control nodes on complex networks, which can help network security managers to play a good auxiliary role in cyber attack defense.

2019-06-10
Liu, D., Li, Y., Tang, Y., Wang, B., Xie, W..  2018.  VMPBL: Identifying Vulnerable Functions Based on Machine Learning Combining Patched Information and Binary Comparison Technique by LCS. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :800-807.

Nowadays, most vendors apply the same open source code to their products, which is dangerous. In addition, when manufacturers release patches, they generally hide the exact location of the vulnerabilities. So, identifying vulnerabilities in binaries is crucial. However, just searching source program has a lower identifying accuracy of vulnerability, which requires operators further to differentiate searched results. Under this context, we propose VMPBL to enhance identifying the accuracy of vulnerability with the help of patch files. VMPBL, compared with other proposed schemes, uses patched functions according to its vulnerable functions in patch file to further distinguish results. We establish a prototype of VMPBL, which can effectively identify vulnerable function types and get rid of safe functions from results. Firstly, we get the potential vulnerable-patched functions by binary comparison technique based on K-Trace algorithm. Then we combine the functions with vulnerability and patch knowledge database to classify these function pairs and identify the possible vulnerable functions and the vulnerability types. Finally, we test some programs containing real-world CWE vulnerabilities, and one of the experimental results about CWE415 shows that the results returned from only searching source program are about twice as much as the results from VMPBL. We can see that using VMPBL can significantly reduce the false positive rate of discovering vulnerabilities compared with analyzing source files alone.

2019-02-25
Ojagbule, O., Wimmer, H., Haddad, R. J..  2018.  Vulnerability Analysis of Content Management Systems to SQL Injection Using SQLMAP. SoutheastCon 2018. :1–7.

There are over 1 billion websites today, and most of them are designed using content management systems. Cybersecurity is one of the most discussed topics when it comes to a web application and protecting the confidentiality, integrity of data has become paramount. SQLi is one of the most commonly used techniques that hackers use to exploit a security vulnerability in a web application. In this paper, we compared SQLi vulnerabilities found on the three most commonly used content management systems using a vulnerability scanner called Nikto, then SQLMAP for penetration testing. This was carried on default WordPress, Drupal and Joomla website pages installed on a LAMP server (Iocalhost). Results showed that each of the content management systems was not susceptible to SQLi attacks but gave warnings about other vulnerabilities that could be exploited. Also, we suggested practices that could be implemented to prevent SQL injections.

2019-02-14
Anand, Priya, Ryoo, Jungwoo.  2018.  Architectural Solutions to Mitigate Security Vulnerabilities in Software Systems. Proceedings of the 13th International Conference on Availability, Reliability and Security. :5:1-5:5.

Security issues emerging out of the constantly evolving software applications became a huge challenge to software security experts. In this paper, we propose a prototype to detect vulnerabilities by identifying their architectural sources and also use security patterns to mitigate the identified vulnerabilities. We emphasize the need to consider architectural relations to introduce an effective security solution. In this research, we focused on the taint-style vulnerabilities that can induce injection-based attacks like XSS, SQLI in web applications. With numerous tools available to detect the taint-style vulnerabilities in the web applications, we scanned for the presence of repetition of a vulnerable code pattern in the software. Very importantly, we attempted to identify the architectural source files or modules by developing a tool named ArT Analyzer. We conducted a case study on a leading health-care software by applying the proposed architectural taint analysis and identified the vulnerable spots. We could identify the architectural roots for those vulnerable spots with the use of our tool ArT Analyzer. We verified the results by sharing it with the lead software architect of the project. By adopting an architectural solution, we avoided changes to be done on 252 different lines of code by merely introducing 2 lines of code changes at the architectural roots. Eventually, this solution was integrated into the latest updated release of the health-care software.

Wang, Yan, Zhang, Chao, Xiang, Xiaobo, Zhao, Zixuan, Li, Wenjie, Gong, Xiaorui, Liu, Bingchang, Chen, Kaixiang, Zou, Wei.  2018.  Revery: From Proof-of-Concept to Exploitable. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :1914-1927.

Automatic exploit generation is an open challenge. Existing solutions usually explore in depth the crashing paths, i.e., paths taken by proof-of-concept (POC) inputs triggering vulnerabilities, and generate exploits when exploitable states are found along the paths. However, exploitable states do not always exist in crashing paths. Moreover, existing solutions heavily rely on symbolic execution and are not scalable in path exploration and exploit generation. In addition, few solutions could exploit heap-based vulnerabilities. In this paper, we propose a new solution revery to search for exploitable states in paths diverging from crashing paths, and generate control-flow hijacking exploits for heap-based vulnerabilities. It adopts three novel techniques:(1) a digraph to characterize a vulnerability's memory layout and its contributor instructions;(2) a fuzz solution to explore diverging paths, which have similar memory layouts as the crashing paths, in order to search more exploitable states and generate corresponding diverging inputs;(3) a stitch solution to stitch crashing paths and diverging paths together, and synthesize EXP inputs able to trigger both vulnerabilities and exploitable states. We have developed a prototype of revery based on the binary analysis engine angr, and evaluated it on a set of 19 real world CTF (capture the flag) challenges. Experiment results showed that it could generate exploits for 9 (47%) of them, and generate EXP inputs able to trigger exploitable states for another 5 (26%) of them.

2019-02-08
Yi, F., Cai, H. Y., Xin, F. Z..  2018.  A Logic-Based Attack Graph for Analyzing Network Security Risk Against Potential Attack. 2018 IEEE International Conference on Networking, Architecture and Storage (NAS). :1-4.
In this paper, we present LAPA, a framework for automatically analyzing network security risk and generating attack graph for potential attack. The key novelty in our work is that we represent the properties of networks and zero day vulnerabilities, and use logical reasoning algorithm to generate potential attack path to determine if the attacker can exploit these vulnerabilities. In order to demonstrate the efficacy, we have implemented the LAPA framework and compared with three previous network vulnerability analysis methods. Our analysis results have a low rate of false negatives and less cost of processing time due to the worst case assumption and logical property specification and reasoning. We have also conducted a detailed study of the efficiency for generation attack graph with different value of attack path number, attack path depth and network size, which affect the processing time mostly. We estimate that LAPA can produce high quality results for a large portion of networks.
2019-01-21
Nicolaou, N., Eliades, D. G., Panayiotou, C., Polycarpou, M. M..  2018.  Reducing Vulnerability to Cyber-Physical Attacks in Water Distribution Networks. 2018 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater). :16–19.

Cyber-Physical Systems (CPS), such as Water Distribution Networks (WDNs), deploy digital devices to monitor and control the behavior of physical processes. These digital devices, however, are susceptible to cyber and physical attacks, that may alter their functionality, and therefore the integrity of their measurements/actions. In practice, industrial control systems utilize simple control laws, which rely on various sensor measurements and algorithms which are expected to operate normally. To reduce the impact of a potential failure, operators may deploy redundant components; this however may not be useful, e.g., when a cyber attack at a PLC component occurs. In this work, we address the problem of reducing vulnerability to cyber-physical attacks in water distribution networks. This is achieved by augmenting the graph which describes the information flow from sensors to actuators, by adding new connections and algorithms, to increase the number of redundant cyber components. These, in turn, increase the \textitcyber-physical security level, which is defined in the present paper as the number of malicious attacks a CPS may sustain before becoming unable to satisfy the control requirements. A proof-of-concept of the approach is demonstrated over a simple WDN, with intuition on how this can be used to increase the cyber-physical security level of the system.

2018-11-19
Nasr, E., Shahrour, I..  2017.  Evaluating Wireless Network Vulnerabilities and Attack Paths in Smart Grid Comprehensive Analysis and Implementation. 2017 Sensors Networks Smart and Emerging Technologies (SENSET). :1–4.

Quantifying vulnerability and security levels for smart grid diversified link of networks have been a challenging task for a long period of time. Security experts and network administrators used to act based on their proficiencies and practices to mitigate network attacks rather than objective metrics and models. This paper uses the Markov Chain Model [1] to evaluate quantitatively the vulnerabilities associated to the 802.11 Wi-Fi network in a smart grid. Administrator can now assess the level of severity of potential attacks based on determining the probability density of the successive states and thus, providing the corresponding security measures. This model is based on the observed vulnerabilities provided by the Common Vulnerabilities and Exposures (CVE) database explored by MITRE [2] to calculate the Markov processes (states) transitions probabilities and thus, deducing the vulnerability level of the entire attack paths in an attack graph. Cumulative probabilities referring to high vulnerability level in a specific attack path will lead the system administrator to apply appropriate security measures a priori to potential attacks occurrence.

2018-11-14
Repp, P..  2017.  Diagnostics and Assessment of the Industrial Network Security Expert System. 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :1–5.
The paper dwells on the design of a diagnostic system and expert assessment of the significance of threats to the security of industrial networks. The proposed system is based on a new cyber-attacks classification and presupposes the existence of two structural blocks: the industrial network virtual model based on the scan selected nodal points and the generator of cyber-attacks sets. The diagnostic and expert assessment quality is improved by the use of the Markov chains or the Monte Carlo numerical method. The numerical algorithm of generating cyber-attacks sets is based on the LP$\tau$-sequence.
2018-09-12
Weintraub, E..  2017.  Estimating Target Distribution in security assessment models. 2017 IEEE 2nd International Verification and Security Workshop (IVSW). :82–87.

Organizations are exposed to various cyber-attacks. When a component is exploited, the overall computed damage is impacted by the number of components the network includes. This work is focuses on estimating the Target Distribution characteristic of an attacked network. According existing security assessment models, Target Distribution is assessed by using ordinal values based on users' intuitive knowledge. This work is aimed at defining a formula which enables measuring quantitatively the attacked components' distribution. The proposed formula is based on the real-time configuration of the system. Using the proposed measure, firms can quantify damages, allocate appropriate budgets to actual real risks and build their configuration while taking in consideration the risks impacted by components' distribution. The formula is demonstrated as part of a security continuous monitoring system.

2018-06-20
Bhagat, S. P., Padiya, P., Marathe, N..  2017.  A generic request/reply based algorithm for detection of blackhole attack in MANET. 2017 International Conference On Smart Technologies For Smart Nation (SmartTechCon). :1044–1049.

Mobile Ad Hoc Network (MANET) technology provides intercommunication between different nodes where no infrastructure is available for communication. MANET is attracting many researcher attentions as it is cost effective and easy for implementation. Main challenging aspect in MANET is its vulnerability. In MANET nodes are very much vulnerable to attacks along with its data as well as data flowing through these nodes. One of the main reasons of these vulnerabilities is its communication policy which makes nodes interdependent for interaction and data flow. This mutual trust between nodes is exploited by attackers through injecting malicious node or replicating any legitimate node in MANET. One of these attacks is blackhole attack. In this study, the behavior of blackhole attack is discussed and have proposed a lightweight solution for blackhole attack which uses inbuilt functions.

2018-05-30
Tavasoli, M., Alishahi, S., Zabihi, M., Khorashadizadeh, H., Mohajerzadeh, A. H..  2017.  An Efficient NSKDP Authentication Method to Secure Smart Grid. 2017 IEEE International Conference on Smart Energy Grid Engineering (SEGE). :276–280.

Since the Information Networks are added to the current electricity networks, the security and privacy of individuals is challenged. This combination of technologies creates vulnerabilities in the context of smart grid power which disrupt the consumer energy supply. Methods based on encryption are against the countermeasures attacks that have targeted the integrity and confidentiality factors. Although the cryptography strategies are used in Smart Grid, key management which is different in size from tens to millions of keys (for meters), is considered as the critical processes. The Key mismanagement causes to reveal the secret keys for attacker, a symmetric key distribution method is recently suggested by [7] which is based on a symmetric key distribution, this strategy is very suitable for smart electric meters. The problem with this method is its vulnerability to impersonating respondents attack. The proposed approach to solve this problem is to send the both side identifiers in encrypted form based on hash functions and a random value, the proposed solution is appropriate for devices such as meters that have very little computing power.