Visible to the public Biblio

Found 108 results

Filters: Keyword is Vulnerability  [Clear All Filters]
2023-05-11
Qbea'h, Mohammad, Alrabaee, Saed, Alshraideh, Mohammad, Sabri, Khair Eddin.  2022.  Diverse Approaches Have Been Presented To Mitigate SQL Injection Attack, But It Is Still Alive: A Review. 2022 International Conference on Computer and Applications (ICCA). :1–5.
A huge amount of stored and transferred data is expanding rapidly. Therefore, managing and securing the big volume of diverse applications should have a high priority. However, Structured Query Language Injection Attack (SQLIA) is one of the most common dangerous threats in the world. Therefore, a large number of approaches and models have been presented to mitigate, detect or prevent SQL injection attack but it is still alive. Most of old and current models are created based on static, dynamic, hybrid or machine learning techniques. However, SQL injection attack still represents the highest risk in the trend of web application security risks based on several recent studies in 2021. In this paper, we present a review of the latest research dealing with SQL injection attack and its types, and demonstrating several types of most recent and current techniques, models and approaches which are used in mitigating, detecting or preventing this type of dangerous attack. Then, we explain the weaknesses and highlight the critical points missing in these techniques. As a result, we still need more efforts to make a real, novel and comprehensive solution to be able to cover all kinds of malicious SQL commands. At the end, we provide significant guidelines to follow in order to mitigate such kind of attack, and we strongly believe that these tips will help developers, decision makers, researchers and even governments to innovate solutions in the future research to stop SQLIA.
2023-02-03
Chen, Duanyun, Chen, Zewen, Li, Jie, Liu, Jidong.  2022.  Vulnerability analysis of Cyber-physical power system based on Analytic Hierarchy Process. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:2024–2028.
In recent years, the blackout accident shows that the cause of power failure is not only in the power network, but also in the cyber network. Aiming at the problem of cyber network fault Cyber-physical power systems, combined with the structure and functional attributes of cyber network, the comprehensive criticality of information node is defined. By evaluating the vulnerability of ieee39 node system, it is found that the fault of high comprehensive criticality information node will cause greater load loss to the system. The simulation results show that the comprehensive criticality index can effectively identify the key nodes of the cyber network.
ISSN: 2693-2865
2023-02-02
Debnath, Jayanta K., Xie, Derock.  2022.  CVSS-based Vulnerability and Risk Assessment for High Performance Computing Networks. 2022 IEEE International Systems Conference (SysCon). :1–8.
Common Vulnerability Scoring System (CVSS) is intended to capture the key characteristics of a vulnerability and correspondingly produce a numerical score to indicate the severity. Important efforts are conducted for building a CVSS stochastic model in order to provide a high-level risk assessment to better support cybersecurity decision-making. However, these efforts consider nothing regarding HPC (High-Performance Computing) networks using a Science Demilitary Zone (DMZ) architecture that has special design principles to facilitate data transition, analysis, and store through in a broadband backbone. In this paper, an HPCvul (CVSS-based vulnerability and risk assessment) approach is proposed for HPC networks in order to provide an understanding of the ongoing awareness of the HPC security situation under a dynamic cybersecurity environment. For such a purpose, HPCvul advocates the standardization of the collected security-related data from the network to achieve data portability. HPCvul adopts an attack graph to model the likelihood of successful exploitation of a vulnerability. It is able to merge multiple attack graphs from different HPC subnets to yield a full picture of a large HPC network. Substantial results are presented in this work to demonstrate HPCvul design and its performance.
2023-01-13
Khan, Rida, Barakat, Salma, AlAbduljabbar, Lulwah, AlTayash, Yara, AlMussa, Nofe, AlQattan, Maryam, Jamail, Nor Shahida Mohd.  2022.  WhatsApp: Cyber Security Risk Management, Governance and Control. 2022 Fifth International Conference of Women in Data Science at Prince Sultan University (WiDS PSU). :160–165.
This document takes an in-depth approach to identify WhatsApp's Security risk management, governance and controls. WhatsApp is a communication mobile application that is available on both android and IOS, recently acquired by Facebook and allows us to stay connected. This document identifies all necessary assets, threats, vulnerabilities, and risks to WhatsApp and further provides mitigations and security controls to possibly utilize and secure the application.
Alimzhanova, Zhanna, Tleubergen, Akzer, Zhunusbayeva, Salamat, Nazarbayev, Dauren.  2022.  Comparative Analysis of Risk Assessment During an Enterprise Information Security Audit. 2022 International Conference on Smart Information Systems and Technologies (SIST). :1—6.

This article discusses a threat and vulnerability analysis model that allows you to fully analyze the requirements related to information security in an organization and document the results of the analysis. The use of this method allows avoiding and preventing unnecessary costs for security measures arising from subjective risk assessment, planning and implementing protection at all stages of the information systems lifecycle, minimizing the time spent by an information security specialist during information system risk assessment procedures by automating this process and reducing the level of errors and professional skills of information security experts. In the initial sections, the common methods of risk analysis and risk assessment software are analyzed and conclusions are drawn based on the results of comparative analysis, calculations are carried out in accordance with the proposed model.

2023-01-05
Saha, Sujan Kumar, Mbongue, Joel Mandebi, Bobda, Christophe.  2022.  Metrics for Assessing Security of System-on-Chip. 2022 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :113—116.
Due to the increasing complexity of modern hetero-geneous System-on-Chips (SoC) and the growing vulnerabilities, security risk assessment and quantification is required to measure the trustworthiness of a SoC. This paper describes a systematic approach to model the security risk of a system for malicious hardware attacks. The proposed method uses graph analysis to assess the impact of an attack and the Common Vulnerability Scoring System (CVSS) is used to quantify the security level of the system. To demonstrate the applicability of the proposed metric, we consider two open source SoC benchmarks with different architectures. The overall risk is calculated using the proposed metric by computing the exploitability and impact of attack on critical components of a SoC.
2022-12-23
Softić, Jasmin, Vejzović, Zanin.  2022.  Windows 10 Operating System: Vulnerability Assessment and Exploitation. 2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH). :1–5.
The study focused on assessing and testing Windows 10 to identify possible vulnerabilities and their ability to withstand cyber-attacks. CVE data, alongside other vulnerability reports, were instrumental in measuring the operating system's performance. Metasploit and Nmap were essential in penetration and intrusion experiments in a simulated environment. The study applied the following testing procedure: information gathering, scanning and results analysis, vulnerability selection, launch attacks, and gaining access to the operating system. Penetration testing involved eight attacks, two of which were effective against the different Windows 10 versions. Installing the latest version of Windows 10 did not guarantee complete protection against attacks. Further research is essential in assessing the system's vulnerabilities are recommending better solutions.
ISSN: 2767-9470
2022-08-12
Sachidananda, Vinay, Bhairav, Suhas, Ghosh, Nirnay, Elovici, Yuval.  2019.  PIT: A Probe Into Internet of Things by Comprehensive Security Analysis. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :522–529.
One of the major issues which are hindering widespread and seamless adoption of Internet of Thing (IoT) is security. The IoT devices are vulnerable and susceptible to attacks which became evident from a series of recent large-scale distributed denial-of-service (DDoS) attacks, leading to substantial business and financial losses. Furthermore, in order to find vulnerabilities in IoT, there is a lack of comprehensive security analysis framework. In this paper, we present a modular, adaptable and tunable framework, called PIT, to probe IoT systems at different layers of design and implementation. PIT consists of several security analysis engines, viz., penetration testing, fuzzing, static analysis, and dynamic analysis and an exploitation engine to discover multiple IoT vulnerabilities, respectively. We also develop a novel grey-box fuzzer, called Applica, as a part of the fuzzing engine to overcome the limitations of the present day fuzzers. The proposed framework has been evaluated on a real-world IoT testbed comprising of the state-of-the-art devices. We discovered several network and system-level vulnerabilities such as Buffer Overflow, Denial-of-Service, SQL Injection, etc., and successfully exploited them to demonstrate the presence of security loopholes in the IoT devices.
2022-07-28
Ruohonen, Jukka, Hjerppe, Kalle, Rindell, Kalle.  2021.  A Large-Scale Security-Oriented Static Analysis of Python Packages in PyPI. 2021 18th International Conference on Privacy, Security and Trust (PST). :1—10.
Different security issues are a common problem for open source packages archived to and delivered through software ecosystems. These often manifest themselves as software weaknesses that may lead to concrete software vulnerabilities. This paper examines various security issues in Python packages with static analysis. The dataset is based on a snapshot of all packages stored to the Python Package Index (PyPI). In total, over 197 thousand packages and over 749 thousand security issues are covered. Even under the constraints imposed by static analysis, (a) the results indicate prevalence of security issues; at least one issue is present for about 46% of the Python packages. In terms of the issue types, (b) exception handling and different code injections have been the most common issues. The subprocess module stands out in this regard. Reflecting the generally small size of the packages, (c) software size metrics do not predict well the amount of issues revealed through static analysis. With these results and the accompanying discussion, the paper contributes to the field of large-scale empirical studies for better understanding security problems in software ecosystems.
2022-06-08
Imtiaz, Sayem Mohammad, Sultana, Kazi Zakia, Varde, Aparna S..  2021.  Mining Learner-friendly Security Patterns from Huge Published Histories of Software Applications for an Intelligent Tutoring System in Secure Coding. 2021 IEEE International Conference on Big Data (Big Data). :4869–4876.

Security patterns are proven solutions to recurring problems in software development. The growing importance of secure software development has introduced diverse research efforts on security patterns that mostly focused on classification schemes, evolution and evaluation of the patterns. Despite a huge mature history of research and popularity among researchers, security patterns have not fully penetrated software development practices. Besides, software security education has not been benefited by these patterns though a commonly stated motivation is the dissemination of expert knowledge and experience. This is because the patterns lack a simple embodiment to help students learn about vulnerable code, and to guide new developers on secure coding. In order to address this problem, we propose to conduct intelligent data mining in the context of software engineering to discover learner-friendly software security patterns. Our proposed model entails knowledge discovery from large scale published real-world vulnerability histories in software applications. We harness association rule mining for frequent pattern discovery to mine easily comprehensible and explainable learner-friendly rules, mainly of the type "flaw implies fix" and "attack type implies flaw", so as to enhance training in secure coding which in turn would augment secure software development. We propose to build a learner-friendly intelligent tutoring system (ITS) based on the newly discovered security patterns and rules explored. We present our proposed model based on association rule mining in secure software development with the goal of building this ITS. Our proposed model and prototype experiments are discussed in this paper along with challenges and ongoing work.

2022-05-10
Ahakonye, Love Allen Chijioke, Amaizu, Gabriel Chukwunonso, Nwakanma, Cosmas Ifeanyi, Lee, Jae Min, Kim, Dong-Seong.  2021.  Enhanced Vulnerability Detection in SCADA Systems using Hyper-Parameter-Tuned Ensemble Learning. 2021 International Conference on Information and Communication Technology Convergence (ICTC). :458–461.
The growth of inter-dependency intricacies of Supervisory Control and Data Acquisition (SCADA) systems in industrial operations generates a likelihood of increased vulnerability to malicious threats and machine learning approaches have been extensively utilized in the research for vulnerability detection. Nonetheless, to improve security, an enhanced vulnerability detection using hyper-parameter-tune machine learning is proposed for early detection, classification and mitigation of SCADA communication and transmission networks by classifying benign, or malicious DNS attacks. The proposed scheme, an ensemble optimizer (GentleBoost) upon hyper-parameter tuning, gave a comparative achievement. From the simulation results, the proposed scheme had an outstanding performance within the shortest possible time with an accuracy of 99.49%, 99.23% for precision, and a recall rate of 99.75%. Also, the model was compared to other contemporary algorithms and outperformed all the other algorithms proving to be an approach to keep abreast of the SCADA network vulnerabilities and attacks.
2022-04-20
Hassell, Suzanne, Beraud, Paul, Cruz, Alen, Ganga, Gangadhar, Martin, Steve, Toennies, Justin, Vazquez, Pablo, Wright, Gary, Gomez, Daniel, Pietryka, Frank et al..  2012.  Evaluating network cyber resiliency methods using cyber threat, Vulnerability and Defense Modeling and Simulation. MILCOM 2012 - 2012 IEEE Military Communications Conference. :1—6.
This paper describes a Cyber Threat, Vulnerability and Defense Modeling and Simulation tool kit used for evaluation of systems and networks to improve cyber resiliency. This capability is used to help increase the resiliency of networks at various stages of their lifecycle, from initial design and architecture through the operation of deployed systems and networks. Resiliency of computer systems and networks to cyber threats is facilitated by the modeling of agile and resilient defenses versus threats and running multiple simulations evaluated against resiliency metrics. This helps network designers, cyber analysts and Security Operations Center personnel to perform trades using what-if scenarios to select resiliency capabilities and optimally design and configure cyber resiliency capabilities for their systems and networks.
2022-04-19
Zukran, Busra, Siraj, Maheyzah Md.  2021.  Performance Comparison on SQL Injection and XSS Detection using Open Source Vulnerability Scanners. 2021 International Conference on Data Science and Its Applications (ICoDSA). :61–65.

Web technologies are typically built with time constraints and security vulnerabilities. Automatic software vulnerability scanners are common tools for detecting such vulnerabilities among software developers. It helps to illustrate the program for the attacker by creating a great deal of engagement within the program. SQL Injection and Cross-Site Scripting (XSS) are two of the most commonly spread and dangerous vulnerabilities in web apps that cause to the user. It is very important to trust the findings of the site vulnerability scanning software. Without a clear idea of the accuracy and the coverage of the open-source tools, it is difficult to analyze the result from the automatic vulnerability scanner that provides. The important to do a comparison on the key figure on the automated vulnerability scanners because there are many kinds of a scanner on the market and this comparison can be useful to decide which scanner has better performance in term of SQL Injection and Cross-Site Scripting (XSS) vulnerabilities. In this paper, a method by Jose Fonseca et al, is used to compare open-source automated vulnerability scanners based on detection coverage and a method by Yuki Makino and Vitaly Klyuev for precision rate. The criteria vulnerabilities will be injected into the web applications which then be scanned by the scanners. The results then are compared by analyzing the precision rate and detection coverage of vulnerability detection. Two leading open source automated vulnerability scanners will be evaluated. In this paper, the scanner that being utilizes is OW ASP ZAP and Skipfish for comparison. The results show that from precision rate and detection rate scope, OW ASP ZAP has better performance than Skipfish by two times for precision rate and have almost the same result for detection coverage where OW ASP ZAP has a higher number in high vulnerabilities.

2022-04-18
Paul, Rajshakhar, Turzo, Asif Kamal, Bosu, Amiangshu.  2021.  Why Security Defects Go Unnoticed During Code Reviews? A Case-Control Study of the Chromium OS Project 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). :1373–1385.
Peer code review has been found to be effective in identifying security vulnerabilities. However, despite practicing mandatory code reviews, many Open Source Software (OSS) projects still encounter a large number of post-release security vulnerabilities, as some security defects escape those. Therefore, a project manager may wonder if there was any weakness or inconsistency during a code review that missed a security vulnerability. Answers to this question may help a manager pinpointing areas of concern and taking measures to improve the effectiveness of his/her project's code reviews in identifying security defects. Therefore, this study aims to identify the factors that differentiate code reviews that successfully identified security defects from those that missed such defects. With this goal, we conduct a case-control study of Chromium OS project. Using multi-stage semi-automated approaches, we build a dataset of 516 code reviews that successfully identified security defects and 374 code reviews where security defects escaped. The results of our empirical study suggest that the are significant differences between the categories of security defects that are identified and that are missed during code reviews. A logistic regression model fitted on our dataset achieved an AUC score of 0.91 and has identified nine code review attributes that influence identifications of security defects. While time to complete a review, the number of mutual reviews between two developers, and if the review is for a bug fix have positive impacts on vulnerability identification, opposite effects are observed from the number of directories under review, the number of total reviews by a developer, and the total number of prior commits for the file under review.
2022-04-01
Nair, Kishor Krishnan, Nair, Harikrishnan Damodaran.  2021.  Security Considerations in the Internet of Things Protocol Stack. 2021 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD). :1–6.
Internet of Things (IoT) wireless devices has the capability to interconnect small footprint devices and its key purpose is to have seamless connection without operational barriers. It is built upon a three-layer (Perception, Transportation and Application) protocol stack architecture. A multitude of security principles must be imposed at each layer for the proper and efficient working of various IoT applications. In the forthcoming years, it is anticipated that IoT devices will be omnipresent, bringing several benefits. The intrinsic security issues in conjunction with the resource constraints in IoT devices enables the proliferation of security vulnerabilities. The absence of specifically designed IoT frameworks, specifications, and interoperability issues further exacerbate the challenges in the IoT arena. This paper conducts an investigation in IoT wireless security with a focus on the major security challenges and considerations from an IoT protocol stack perspective. The vulnerabilities in the IoT protocol stack are laid out along with a gap analysis, evaluation, and the discussion on countermeasures. At the end of this work, critical issues are highlighted with the aim of pointing towards future research directions and drawing conclusions out of it.
2022-02-24
Zhou, Andy, Sultana, Kazi Zakia, Samanthula, Bharath K..  2021.  Investigating the Changes in Software Metrics after Vulnerability Is Fixed. 2021 IEEE International Conference on Big Data (Big Data). :5658–5663.
Preventing software vulnerabilities while writing code is one of the most effective ways for avoiding cyber attacks on any developed system. Although developers follow some standard guiding principles for ensuring secure code, the code can still have security bottlenecks and be compromised by an attacker. Therefore, assessing software security while developing code can help developers in writing vulnerability free code. Researchers have already focused on metrics-based and text mining based software vulnerability prediction models. The metrics based models showed higher precision in predicting vulnerabilities although the recall rate is low. In addition, current research did not investigate the impact of individual software metric on the occurrences of vulnerabilities. The main objective of this paper is to track the changes in every software metric after the developer fixes a particular vulnerability. The results of our research will potentially motivate further research on building more accurate vulnerability prediction models based on the appropriate software metrics. In particular, we have compared a total of 250 files from Apache Tomcat and Apache CXF. These files were extracted from the Apache database and were chosen because Apache released these files as vulnerable in their publicly available security advisories. Using a static analysis tool, metrics of the targeted vulnerable files and relevant fixed files (files where vulnerable code is removed by the developers) were extracted and compared. We show that eight of the 40 metrics have an average increase of 2% from vulnerable to fixed files. These metrics include CountDeclClass, CountDeclClassMethod, CountDeclClassVariable, CountDeclInstanceVariable, CountDeclMethodDefault, CountLineCode, MaxCyclomaticStrict, MaxNesting. This study will help developers to assess software security through utilizing software metrics in secure coding practices.
2022-01-31
Squarcina, Marco, Calzavara, Stefano, Maffei, Matteo.  2021.  The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches. 2021 IEEE Security and Privacy Workshops (SPW). :432—443.
Service workers boost the user experience of modern web applications by taking advantage of the Cache API to improve responsiveness and support offline usage. In this paper, we present the first security analysis of the threats posed by this programming practice, identifying an attack with major security implications. In particular, we show how a traditional XSS attack can abuse the Cache API to escalate into a personin-the-middle attack against cached content, thus compromising its confidentiality and integrity. Remarkably, this attack enables new threats which are beyond the scope of traditional XSS. After defining the attack, we study its prevalence in the wild, finding that the large majority of the sites which register service workers using the Cache API are vulnerable as long as a single webpage in the same origin of the service worker is affected by an XSS. Finally, we propose a browser-side countermeasure against this attack, and we analyze its effectiveness and practicality in terms of security benefits and backward compatibility with existing web applications.
Squarcina, Marco, Calzavara, Stefano, Maffei, Matteo.  2021.  The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches. 2021 IEEE Security and Privacy Workshops (SPW). :432—443.
Service workers boost the user experience of modern web applications by taking advantage of the Cache API to improve responsiveness and support offline usage. In this paper, we present the first security analysis of the threats posed by this programming practice, identifying an attack with major security implications. In particular, we show how a traditional XSS attack can abuse the Cache API to escalate into a personin-the-middle attack against cached content, thus compromising its confidentiality and integrity. Remarkably, this attack enables new threats which are beyond the scope of traditional XSS. After defining the attack, we study its prevalence in the wild, finding that the large majority of the sites which register service workers using the Cache API are vulnerable as long as a single webpage in the same origin of the service worker is affected by an XSS. Finally, we propose a browser-side countermeasure against this attack, and we analyze its effectiveness and practicality in terms of security benefits and backward compatibility with existing web applications.
Tewari, Naveen, Datt, Gopal.  2021.  A Study On The Systematic Review Of Security Vulnerabilities Of Popular Web Browsers. 2021 International Conference on Technological Advancements and Innovations (ICTAI). :314—318.
Internet browser is the most normally utilized customer application and speed and proficiency of our online work rely upon program generally. As the market is immersed with new programs there is a ton of disarray in everybody’s psyche regarding which is the best program. Our task intends to respond to this inquiry. We have done a relative investigation of the most well-known internet browsers specifically Google Chrome, Mozilla Firefox, Internet Explorer, Microsoft Edge, Opera, etc. In the main period of our task different correlation boundaries are chosen which can be comprehensively classified into - General Features, Security highlights, and program extensibility highlights. Utilizing the chose benchmarking instruments every program is tried. The main objective of this study is to identify the security vulnerabilities of popular web browsers. We have also discussed and analyzed each potential security vulnerability found in the web browsers. The study also tries to recommend viable measures to slow down the security breach in web browsers.
2022-01-25
Bhuiyan, Farzana Ahamed, Murphy, Justin, Morrison, Patrick, Rahman, Akond.  2021.  Practitioner Perception of Vulnerability Discovery Strategies. 2021 IEEE/ACM 2nd International Workshop on Engineering and Cybersecurity of Critical Systems (EnCyCriS). :41—44.
The fourth industrial revolution envisions industry manufacturing systems to be software driven where mundane manufacturing tasks can be automated. As software is perceived as an integral part of this vision, discovering vulnerabilities is of paramount of importance so that manufacturing systems are secure. A categorization of vulnerability discovery strategies can inform practitioners on how to identify undiscovered vulnerabilities in software. Recently researchers have investigated and identified vulnerability discovery strategies used in open source software (OSS) projects. The efficacy of the derived strategy needs to be validated by obtaining feedback from practitioners. Such feedback can be helpful to assess if identified strategies are useful for practitioners and possible directions the derived vulnerability discovery strategies can be improvised. We survey 51 practitioners to assess if four vulnerability discovery strategies: diagnostics, malicious payload construction, misconfiguration, and pernicious execution can be used to identify undiscovered vulnerabilities. Practitioners perceive the strategies to be useful: for example, we observe 88% of the surveyed practitioners to agree that diagnostics could be used to discover vulnerabilities. Our work provides evidence of usefulness for the identified strategies.
2021-10-12
Sultana, Kazi Zakia, Codabux, Zadia, Williams, Byron.  2020.  Examining the Relationship of Code and Architectural Smells with Software Vulnerabilities. 2020 27th Asia-Pacific Software Engineering Conference (APSEC). :31–40.
Context: Security is vital to software developed for commercial or personal use. Although more organizations are realizing the importance of applying secure coding practices, in many of them, security concerns are not known or addressed until a security failure occurs. The root cause of security failures is vulnerable code. While metrics have been used to predict software vulnerabilities, we explore the relationship between code and architectural smells with security weaknesses. As smells are surface indicators of a deeper problem in software, determining the relationship between smells and software vulnerabilities can play a significant role in vulnerability prediction models. Objective: This study explores the relationship between smells and software vulnerabilities to identify the smells. Method: We extracted the class, method, file, and package level smells for three systems: Apache Tomcat, Apache CXF, and Android. We then compared their occurrences in the vulnerable classes which were reported to contain vulnerable code and in the neutral classes (non-vulnerable classes where no vulnerability had yet been reported). Results: We found that a vulnerable class is more likely to have certain smells compared to a non-vulnerable class. God Class, Complex Class, Large Class, Data Class, Feature Envy, Brain Class have a statistically significant relationship with software vulnerabilities. We found no significant relationship between architectural smells and software vulnerabilities. Conclusion: We can conclude that for all the systems examined, there is a statistically significant correlation between software vulnerabilities and some smells.
Ackley, Darryl, Yang, Hengzhao.  2020.  Exploration of Smart Grid Device Cybersecurity Vulnerability Using Shodan. 2020 IEEE Power Energy Society General Meeting (PESGM). :1–5.
The generation, transmission, distribution, and storage of electric power is becoming increasingly decentralized. Advances in Distributed Energy Resources (DERs) are rapidly changing the nature of the power grid. Moreover, the accommodation of these new technologies by the legacy grid requires that an increasing number of devices be Internet connected so as to allow for sensor and actuator information to be collected, transmitted, and processed. With the wide adoption of the Internet of Things (IoT), the cybersecurity vulnerabilities of smart grid devices that can potentially affect the stability, reliability, and resilience of the power grid need to be carefully examined and addressed. This is especially true in situations in which smart grid devices are deployed with default configurations or without reasonable protections against malicious activities. While much work has been done to characterize the vulnerabilities associated with Supervisory Control and Data Acquisition (SCADA) and Industrial Control System (ICS) devices, this paper demonstrates that similar vulnerabilities associated with the newer class of IoT smart grid devices are becoming a concern. Specifically, this paper first performs an evaluation of such devices using the Shodan platform and text processing techniques to analyze a potential vulnerability involving the lack of password protection. This work further explores several Shodan search terms that can be used to identify additional smart grid components that can be evaluated in terms of cybersecurity vulnerabilities. Finally, this paper presents recommendations for the more secure deployment of such smart grid devices.
2021-09-30
Liu, Xiaoyang, Zhu, Ziyuan.  2020.  pcSVF: An Evaluation of Side-Channel Vulnerability of Port Contention. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1813–1819.
The threats from side-channel attacks to modern processors has become a serious problem, especially under the enhancement of the microarchitecture characteristics with multicore and resource sharing. Therefore, the research and measurement of the vulnerability of the side-channel attack of the system is of great significance for computer designers. Most of the current evaluation methods proposed by researchers are only for typical cache side-channel attacks. In this paper, we propose a method to measure systems' vulnerability to side-channel attacks caused by port contention called pcSVF. We collected the traces of the victim and attacker and computed the correlation coefficient between them, thus we can measure the vulnerability of the system against side-channel attack. Then we analyzed the effectiveness of the method through the results under different system defense schemes.
2021-08-17
Dmitry, Morozov, Elena, Ponomareva.  2020.  Linux Privilege Increase Threat Analysis. 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :0579—0581.
Today, Linux is one of the main operating systems (OS) used both on desktop computers and various mobile devices. This OS is also widely applied in state and municipal structures, including law enforcement agencies and automated control systems used in the Armed Forces of the Russian Federation. It's worth noting that the process of replacing the Linux OS with domestic protected OSs that use the Linux kernel has now begun. In this regard, the analysis of threats to information security of the Linux OS is highly relevant. In this article, the authors discuss the security problems of Linux OS associated with unauthorized user privileges increase, as a result of which an attacker can gain full control over the OS. The approaches to differentiating user privileges in Linux are analyzed and their advantages and disadvantages are considered. As an example, the causes of the vulnerability CVE-2018-14665 were identified and measures to eliminate it were proposed.
2021-08-11
Abdalla, Peshraw Ahmed, Varol, Cihan.  2020.  Testing IoT Security: The Case Study of an IP Camera. 2020 8th International Symposium on Digital Forensics and Security (ISDFS). :1—5.
While the Internet of Things (IoT) applications and devices expanded rapidly, security and privacy of the IoT devices emerged as a major problem. Current studies reveal that there are significant weaknesses detected in several types of IoT devices moreover in several situations there are no security mechanisms to protect these devices. The IoT devices' users utilize the internet for the purpose of control and connect their machines. IoT application utilization has risen exponentially over time and our sensitive data is captured by IoT devices continuously, unknowingly or knowingly. The motivation behind this paper was the vulnerabilities that exist at the IP cameras. In this study, we undertake a more extensive investigation of IP cameras' vulnerabilities and demonstrate their effect on users' security and privacy through the use of the Kali Linux penetration testing platform and its tools. For this purpose, the paper performs a hands-on test on an IP camera with the name (“Intelligent Onvif YY HD”) to analyzes the security elements of this device. The results of this paper show that IP cameras have several security lacks and weaknesses which these flaws have multiple security impacts on users.