Dalvi, Jai, Sharma, Vyomesh, Shetty, Ruchika, Kulkarni, Sujata.
2021.
DDoS Attack Detection using Artificial Neural Network. 2021 International Conference on Industrial Electronics Research and Applications (ICIERA). :1—5.
Distributed denial of service (DDoS) attacks is one of the most evolving threats in the current Internet situation and yet there is no effective mechanism to curb it. In the field of DDoS attacks, as in all other areas of cybersecurity, attackers are increasingly using sophisticated methods. The work in this paper focuses on using Artificial Neural Network to detect various types of DDOS attacks(UDP-Flood, Smurf, HTTP-Flood and SiDDoS). We would be mainly focusing on the network and transport layer DDoS attacks. Additionally, the time and space complexity is also calculated to further improve the efficiency of the model implemented and overcome the limitations found in the research gap. The results obtained from our analysis on the dataset show that our proposed methods can better detect the DDoS attack.
Mishra, Anupama, Gupta, B. B., Peraković, Dragan, Peñalvo, Francisco José García, Hsu, Ching-Hsien.
2021.
Classification Based Machine Learning for Detection of DDoS attack in Cloud Computing. 2021 IEEE International Conference on Consumer Electronics (ICCE). :1—4.
Distributed Denial of service attack(DDoS)is a network security attack and now the attackers intruded into almost every technology such as cloud computing, IoT, and edge computing to make themselves stronger. As per the behaviour of DDoS, all the available resources like memory, cpu or may be the entire network are consumed by the attacker in order to shutdown the victim`s machine or server. Though, the plenty of defensive mechanism are proposed, but they are not efficient as the attackers get themselves trained by the newly available automated attacking tools. Therefore, we proposed a classification based machine learning approach for detection of DDoS attack in cloud computing. With the help of three classification machine learning algorithms K Nearest Neighbor, Random Forest and Naive Bayes, the mechanism can detect a DDoS attack with the accuracy of 99.76%.
Alotaibi, Faisal, Lisitsa, Alexei.
2021.
Matrix profile for DDoS attacks detection. 2021 16th Conference on Computer Science and Intelligence Systems (FedCSIS). :357—361.
Several previous studies have focused on Distributed Denial of Service (DDoS) attacks, which are a crucial problem in computer network security. In this paper we explore the applicability of a a time series method known as a matrix profile to the anomaly based DDoS attacks detection. The study thus examined how the matrix profile method performed in diverse situations related to DDoS attacks, as well as identifying those features that are most applicable in various scenarios. Based on reported empirical evaluation the matrix profile method is shown to be efficient against most of the considered types of DDoS attacks.
Chu, Hung-Chi, Yan, Chan-You.
2021.
DDoS Attack Detection with Packet Continuity Based on LSTM Model. 2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE). :44—47.
Most information systems rely on the Internet to provide users with various services. Distributed Denial-of-Service (DDoS) attacks are currently one of the main cyber threats, which causes the system or network disabled. To ensure that the information system can provide services for users normally, it is important to detect the occurrence of DDoS attacks quickly and accurately. Therefore, this research proposes a system based on packet continuity to detect DDoS attacks. On average, it only takes a few milliseconds to collect a certain number of consecutive packets, and then DDoS attacks can be detected. Experimental results show that the accuracy of detecting DDoS attacks based on packet continuity is higher than 99.9% and the system response time is about 5 milliseconds.
Bozorov, Suhrobjon.
2021.
DDoS Attack Detection via IDS: Open Challenges and Problems. 2021 International Conference on Information Science and Communications Technologies (ICISCT). :1—4.
This paper discusses DDoS attacks, their current threat level and IDS systems, which are one of the main tools to protect against them. It focuses on the problems encountered by IDS systems in detecting DDoS attacks and the difficulties and challenges of integrating them with artificial intelligence systems today.
Liu, Luo, Jiang, Wang, Li, Jia.
2021.
A CGAN-based DDoS Attack Detection Method in SDN. 2021 International Wireless Communications and Mobile Computing (IWCMC). :1030—1034.
Distributed denial of service (DDoS) attack is a common way of network attack. It has the characteristics of wide distribution, low cost and difficult defense. The traditional algorithms of machine learning (ML) have such shortcomings as excessive systemic overhead and low accuracy in detection of DDoS. In this paper, a CGAN (conditional generative adversarial networks, conditional GAN) -based method is proposed to detect the attack of DDoS. On off-line training, five features are extracted in order to adapt the input of neural network. On the online recognition, CGAN model is adopted to recognize the packets of DDoS attack. The experimental results demonstrate that our proposed method obtains the better performance than the random forest-based method.
Nugraha, Beny, Kulkarni, Naina, Gopikrishnan, Akash.
2021.
Detecting Adversarial DDoS Attacks in Software- Defined Networking Using Deep Learning Techniques and Adversarial Training. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :448—454.
In recent years, Deep Learning (DL) has been utilized for cyber-attack detection mechanisms as it offers highly accurate detection and is able to overcome the limitations of standard machine learning techniques. When applied in a Software-Defined Network (SDN) environment, a DL-based detection mechanism shows satisfying detection performance. However, in the case of adversarial attacks, the detection performance deteriorates. Therefore, in this paper, first, we outline a highly accurate flooding DDoS attack detection framework based on DL for SDN environments. Second, we investigate the performance degradation of our detection framework when being tested with two adversary traffic datasets. Finally, we evaluate three adversarial training procedures for improving the detection performance of our framework concerning adversarial attacks. It is shown that the application of one of the adversarial training procedures can avoid detection performance degradation and thus might be used in a real-time detection system based on continual learning.
Zhou, Yansen, Chen, Qi, Wang, Yumiao.
2021.
Research on DDoS Attack Detection based on Multi-dimensional Entropy. 2021 IEEE 9th International Conference on Computer Science and Network Technology (ICCSNT). :65—69.
DDoS attack detection in a single dimension cannot cope with complex and new attacks. Aiming at the problems existing in single dimension detection, this paper proposes an algorithm to detect DDoS attack based on multi-dimensional entropy. Firstly, the algorithm selects multiple dimensions and establishes corresponding decision function for each dimension and calculates its information entropy. Secondly, the multidimensional sliding window CUSUM algorithm without parameters is used to synthesize the detection results of three dimensions to determine whether it is attacked by DDoS. Finally, the data set published by MIT Lincoln Laboratory is used for testing. Experimental results show that compared with single dimension detection algorithm, this method has good detection rate and low false alarm rate.
Arthi, R, Krishnaveni, S.
2021.
Design and Development of IOT Testbed with DDoS Attack for Cyber Security Research. 2021 3rd International Conference on Signal Processing and Communication (ICPSC). :586—590.
The Internet of Things (IoT) is clubbed by networking of sensors and other embedded electronics. As more devices are getting connected, the vulnerability of getting affected by various IoT threats also increases. Among the IoT threads, DDoS attacks are causing serious issues in recent years. In IoT, these attacks are challenging to detect and isolate. Thus, an effective Intrusion Detection System (IDS) is essential to defend against these attacks. The traditional IDS is based on manual blacklisting. These methods are time-consuming and will not be effective to detect novel intrusions. At present, IDS are automated and programmed to be dynamic which are aided by machine learning & deep learning models. The performance of these models mainly depends on the data used to train the model. Majority of IDS study is performed with non-compatible and outdated datasets like KDD 99 and NSL KDD. Research on specific DDoS attack datasets is very less. Therefore, in this paper, we first aim to examine the effect of existing datasets in the IoT environment. Then, we propose a real-time data collection framework for DNS amplification attacks in IoT. The generated network packets containing DDoS attack is captured through port mirroring.
Kousar, Heena, Mulla, Mohammed Moin, Shettar, Pooja, D. G., Narayan.
2021.
DDoS Attack Detection System using Apache Spark. 2021 International Conference on Computer Communication and Informatics (ICCCI). :1—5.
Distributed Denial of Service Attacks (DDoS) are most widely used cyber-attacks. Thus, design of DDoS detection mechanisms has attracted attention of researchers. Design of these mechanisms involves building statistical and machine learning models. Most of the work in design of mechanisms is focussed on improving the accuracy of the model. However, due to large volume of network traffic, scalability and performance of these techniques is an important research issue. In this work, we use Apache Spark framework for detection of DDoS attacks. We use NSL-KDD Cup as a benchmark dataset for experimental analysis. The results reveal that random forest performs better than decision trees and distributed processing improves the performance in terms of pre-processing and training time.