Li, R., Wu, B..
2020.
Early detection of DDoS based on φ-entropy in SDN networks. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:731—735.
Software defined network (SDN) is an emerging network architecture. Its control logic and forwarding logic are separated. SDN has the characteristics of centralized management, which makes it easier for malicious attackers to use the security vulnerabilities of SDN networks to implement distributed denial Service (DDoS) attack. Information entropy is a kind of lightweight DDoS early detection method. This paper proposes a DDoS attack detection method in SDN networks based on φ-entropy. φ-entropy can adjust related parameters according to network conditions and enlarge feature differences between normal and abnormal traffic, which can make it easier to detect attacks in the early stages of DDoS traffic formation. Firstly, this article demonstrates the basic properties of φ-entropy, mathematically illustrates the feasibility of φ-entropy in DDoS detection, and then we use Mini-net to conduct simulation experiments to compare the detection effects of DDoS with Shannon entropy.
Başkaya, D., Samet, R..
2020.
DDoS Attacks Detection by Using Machine Learning Methods on Online Systems. 2020 5th International Conference on Computer Science and Engineering (UBMK). :52—57.
DDoS attacks impose serious threats to many large or small organizations; therefore DDoS attacks have to be detected as soon as possible. In this study, a methodology to detect DDoS attacks is proposed and implemented on online systems. In the scope of the proposed methodology, Multi Layer Perceptron (MLP), Random Forest (RF), K-Nearest Neighbor (KNN), C-Support Vector Machine (SVC) machine learning methods are used with scaling and feature reduction preprocessing methods and then effects of preprocesses on detection accuracy rates of HTTP (Hypertext Transfer Protocol) flood, TCP SYN (Transport Control Protocol Synchronize) flood, UDP (User Datagram Protocol) flood and ICMP (Internet Control Message Protocol) flood DDoS attacks are analyzed. Obtained results showed that DDoS attacks can be detected with high accuracy of 99.2%.
Lotfalizadeh, H., Kim, D. S..
2020.
Investigating Real-Time Entropy Features of DDoS Attack Based on Categorized Partial-Flows. 2020 14th International Conference on Ubiquitous Information Management and Communication (IMCOM). :1—6.
With the advent of IoT devices and exponential growth of nodes on the internet, computer networks are facing new challenges, with one of the more important ones being DDoS attacks. In this paper, new features to detect initiation and termination of DDoS attacks are investigated. The method to extract these features is devised with respect to some openflowbased switch capabilities. These features provide us with a higher resolution to view and process packet count entropies, thus improving DDoS attack detection capabilities. Although some of the technical assumptions are based on SDN technology and openflow protocol, the methodology can be applied in other networking paradigms as well.
Wang, L., Liu, Y..
2020.
A DDoS Attack Detection Method Based on Information Entropy and Deep Learning in SDN. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:1084—1088.
Software Defined Networking (SDN) decouples the control plane and the data plane and solves the difficulty of new services deployment. However, the threat of a single point of failure is also introduced at the same time. The attacker can launch DDoS attacks towards the controller through switches. In this paper, a DDoS attack detection method based on information entropy and deep learning is proposed. Firstly, suspicious traffic can be inspected through information entropy detection by the controller. Then, fine-grained packet-based detection is executed by the convolutional neural network (CNN) model to distinguish between normal traffic and attack traffic. Finally, the controller performs the defense strategy to intercept the attack. The experiments indicate that the accuracy of this method reaches 98.98%, which has the potential to detect DDoS attack traffic effectively in the SDN environment.
Nandi, S., Phadikar, S., Majumder, K..
2020.
Detection of DDoS Attack and Classification Using a Hybrid Approach. 2020 Third ISEA Conference on Security and Privacy (ISEA-ISAP). :41—47.
In the area of cloud security, detection of DDoS attack is a challenging task such that legitimate users use the cloud resources properly. So in this paper, detection and classification of the attacking packets and normal packets are done by using various machine learning classifiers. We have selected the most relevant features from NSL KDD dataset using five (Information gain, gain ratio, chi-squared, ReliefF, and symmetrical uncertainty) commonly used feature selection methods. Now from the entire selected feature set, the most important features are selected by applying our hybrid feature selection method. Since all the anomalous instances of the dataset do not belong to DDoS category so we have separated only the DDoS packets from the dataset using the selected features. Finally, the dataset has been prepared and named as KDD DDoS dataset by considering the selected DDoS packets and normal packets. This KDD DDoS dataset has been discretized using discretize tool in weka for getting better performance. Finally, this discretize dataset has been applied on some commonly used (Naive Bayes, Bayes Net, Decision Table, J48 and Random Forest) classifiers for determining the detection rate of the classifiers. 10 fold cross validation has been used here for measuring the robustness of the system. To measure the efficiency of our hybrid feature selection method, we have also applied the same set of classifiers on the NSL KDD dataset, where it gives the best anomaly detection rate of 99.72% and average detection rate 98.47% similarly, we have applied the same set of classifiers on NSL DDoS dataset and obtain the average DDoS detection of 99.01% and the best DDoS detection rate of 99.86%. In order to compare the performance of our proposed hybrid method, we have also applied the existing feature selection methods and measured the detection rate using the same set of classifiers. Finally, we have seen that our hybrid approach for detecting the DDoS attack gives the best detection rate compared to some existing methods.
Saxena, U., Sodhi, J., Singh, Y..
2020.
A Comprehensive Approach for DDoS Attack Detection in Smart Home Network Using Shortest Path Algorithm. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :392—395.
A Distributed Denial of Service (DDoS) attack is an attack that compromised the bandwidth of the whole network by choking down all the available network resources which are publically available, thus makes access to that resource unavailable. The DDoS attack is more vulnerable than a normal DoS attack because here the sources of attack origin are more than one, so users cannot even estimate how to detect and where to take actions so that attacks can be dissolved. This paper proposed a unique approach for DDoS detection using the shortest path algorithm. This Paper suggests that the remedy that must be taken in order to counter-affect the DDoS attack in a smart home network.
Sumantra, I., Gandhi, S. Indira.
2020.
DDoS attack Detection and Mitigation in Software Defined Networks. 2020 International Conference on System, Computation, Automation and Networking (ICSCAN). :1—5.
This work aims to formulate an effective scheme which can detect and mitigate of Distributed Denial of Service (DDoS) attack in Software Defined Networks. Distributed Denial of Service attacks are one of the most destructive attacks in the internet. Whenever you heard of a website being hacked, it would have probably been a victim of a DDoS attack. A DDoS attack is aimed at disrupting the normal operation of a system by making service and resources unavailable to legitimate users by overloading the system with excessive superfluous traffic from distributed source. These distributed set of compromised hosts that performs the attack are referred as Botnet. Software Defined Networking being an emerging technology, offers a solution to reduce network management complexity. It separates the Control plane and the data plane. This decoupling provides centralized control of the network with programmability and flexibility. This work harness this programming ability and centralized control of SDN to obtain the randomness of the network flow data. This statistical approach utilizes the source IP in the network and various attributes of TCP flags and calculates entropy from them. The proposed technique can detect volume based and application based DDoS attacks like TCP SYN flood, Ping flood and Slow HTTP attacks. The methodology is evaluated through emulation using Mininet and Detection and mitigation strategies are implemented in POX controller. The experimental results show the proposed method have improved performance evaluation parameters including the Attack detection time, Delay to serve a legitimate request in the presence of attacker and overall CPU utilization.
Abdulkarem, H. S., Dawod, A..
2020.
DDoS Attack Detection and Mitigation at SDN Data Plane Layer. 2020 2nd Global Power, Energy and Communication Conference (GPECOM). :322—326.
In the coming future, Software-defined networking (SDN) will become a technology more responsive, fully automated, and highly secure. SDN is a way to manage networks by separate the control plane from the forwarding plane, by using software to manage network functions through a centralized control point. A distributed denial-of-service (DDoS) attack is the most popular malicious attempt to disrupt normal traffic of a targeted server, service, or network. The problem of the paper is the DDoS attack inside the SDN environment and how could use SDN specifications through the advantage of Open vSwitch programmability feature to stop the attack. This paper presents DDoS attack detection and mitigation in the SDN data-plane by applying a written SDN application in python language, based on the malicious traffic abnormal behavior to reduce the interference with normal traffic. The evaluation results reveal detection and mitigation time between 100 to 150 sec. The work also sheds light on the programming relevance with the open daylight controller over an abstracted view of the network infrastructure.
He, J., Tan, Y., Guo, W., Xian, M..
2020.
A Small Sample DDoS Attack Detection Method Based on Deep Transfer Learning. 2020 International Conference on Computer Communication and Network Security (CCNS). :47—50.
When using deep learning for DDoS attack detection, there is a general degradation in detection performance due to small sample size. This paper proposes a small-sample DDoS attack detection method based on deep transfer learning. First, deep learning techniques are used to train several neural networks that can be used for transfer in DDoS attacks with sufficient samples. Then we design a transferability metric to compare the transfer performance of different networks. With this metric, the network with the best transfer performance can be selected among the four networks. Then for a small sample of DDoS attacks, this paper demonstrates that the deep learning detection technique brings deterioration in performance, with the detection performance dropping from 99.28% to 67%. Finally, we end up with a 20.8% improvement in detection performance by deep transfer of the 8LANN network in the target domain. The experiment shows that the detection method based on deep transfer learning proposed in this paper can well improve the performance deterioration of deep learning techniques for small sample DDoS attack detection.
Yeom, S., Kim, K..
2020.
Improving Performance of Collaborative Source-Side DDoS Attack Detection. 2020 21st Asia-Pacific Network Operations and Management Symposium (APNOMS). :239—242.
Recently, as the threat of Distributed Denial-of-Service attacks exploiting IoT devices has spread, source-side Denial-of-Service attack detection methods are being studied in order to quickly detect attacks and find their locations. Moreover, to mitigate the limitation of local view of source-side detection, a collaborative attack detection technique is required to share detection results on each source-side network. In this paper, a new collaborative source-side DDoS attack detection method is proposed for detecting DDoS attacks on multiple networks more correctly, by considering the detecting performance on different time zone. The results of individual attack detection on each network are weighted based on detection rate and false positive rate corresponding to the time zone of each network. By gathering the weighted detection results, the proposed method determines whether a DDoS attack happens. Through extensive evaluation with real network traffic data, it is confirmed that the proposed method reduces false positive rate by 35% while maintaining high detection rate.