Visible to the public Biblio

Filters: Keyword is DoS  [Clear All Filters]
2023-04-14
AlShalaan, Manal, AlSubaie, Reem, Ara, Anees.  2022.  Secure Storage System Using Cryptographic Techniques. 2022 Fifth International Conference of Women in Data Science at Prince Sultan University (WiDS PSU). :138–142.
In the era of Internet usage growth, storage services are widely used where users' can store their data, while hackers techniques pose massive threats to users' data security. The proposed system introduces multiple layers of security where data confidentiality, integrity and availability are achieved using honey encryption, hashed random passwords as well as detecting intruders and preventing them. The used techniques can ensure security against brute force and denial of service attacks. Our proposed methodology proofs the efficiency for storing and retrieving data using honey words and password hashing with less execution time and more security features achieved compared with other systems. Other systems depend on user password leading to easily predict it, we avoid this approach by making the password given to the user is randomly generated which make it unpredictable and hard to break. Moreover, we created a simple user interface to interact with users to take their inputs and store them along with the given password in true database, if an adversary detected, he will be processed as a normal user but with fake information taken from another database called false database, after that, the admin will be notified about this illegitimate access by providing the IP address. This approach will make the admin have continuous detection and ensure availability and confidentiality. Our execution time is efficient as the encryption process takes 244 ms and decryption 229 ms.
2023-03-31
Kowalski, Timothy, Chowdhury, Md Minhaz, Latif, Shadman, Kambhampaty, Krishna.  2022.  Bitcoin: Cryptographic Algorithms, Security Vulnerabilities and Mitigations. 2022 IEEE International Conference on Electro Information Technology (eIT). :544–549.
Blockchain technology has made it possible to store and send digital currencies. Bitcoin wallets and marketplaces have made it easy for nontechnical users to use the protocol. Since its inception, the price of Bitcoin is going up and the number of nodes in the network has increased drastically. The increasing popularity of Bitcoin has made exchanges and individual nodes a target for an attack. Understanding the Bitcoin protocol better helps security engineers to harden the network and helps regular users secure their hot wallets. In this paper, Bitcoin protocol is presented with description of the mining process which secures transactions. In addition, the Bitcoin algorithms and their security are described with potential vulnerabilities in the protocol and potential exploits for attackers. Finally, we propose some security solutions to help mitigate attacks on Bitcoin exchanges and hot wallets.
ISSN: 2154-0373
2022-12-20
Sweigert, Devin, Chowdhury, Md Minhaz, Rifat, Nafiz.  2022.  Exploit Security Vulnerabilities by Penetration Testing. 2022 IEEE International Conference on Electro Information Technology (eIT). :527–532.
When we setup a computer network, we need to know if an attacker can get into the system. We need to do a series of test that shows the vulnerabilities of the network setup. These series of tests are commonly known Penetration Test. The need for penetration testing was not well known before. This paper highlights how penetration started and how it became as popular as it has today. The internet played a big part into the push to getting the idea of penetration testing started. The styles of penetration testing can vary from physical to network or virtual based testing which either can be a benefit to how a company becomes more secure. This paper presents the steps of penetration testing that a company or organization needs to carry out, to find out their own security flaws.
2022-04-13
Mishra, Sarthak, Chatterjee, Pinaki Sankar.  2021.  D3: Detection and Prevention of DDoS Attack Using Cuckoo Filter. 2021 19th OITS International Conference on Information Technology (OCIT). :279—284.
DDoS attacks have grown in popularity as a tactic for potential hackers, cyber blackmailers, and cyberpunks. These attacks have the potential to put a person unconscious in a matter of seconds, resulting in severe economic losses. Despite the vast range of conventional mitigation techniques available today, DDoS assaults are still happening to grow in frequency, volume, and intensity. A new network paradigm is necessary to meet the requirements of today's tough security issues. We examine the available detection and mitigation of DDoS attacks techniques in depth. We classify solutions based on detection of DDoS attacks methodologies and define the prerequisites for a feasible solution. We present a novel methodology named D3 for detecting and mitigating DDoS attacks using cuckoo filter.
2022-04-01
Edzereiq Kamarudin, Imran, Faizal Ab Razak, Mohd, Firdaus, Ahmad, Izham Jaya, M., Ti Dun, Yau.  2021.  Performance Analysis on Denial of Service attack using UNSW-NB15 Dataset. 2021 International Conference on Software Engineering Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM). :423–426.
With the advancement of network technology, users can now easily gain access to and benefit from networks. However, the number of network violations is increasing. The main issue with this violation is that irresponsible individuals are infiltrating the network. Network intrusion can be interpreted in a variety of ways, including cyber criminals forcibly attempting to disrupt network connections, gaining unauthorized access to valuable data, and then stealing, corrupting, or destroying the data. There are already numerous systems in place to detect network intrusion. However, the systems continue to fall short in detecting and counter-attacking network intrusion attacks. This research aims to enhance the detection of Denial of service (DoS) by identifying significant features and identifying abnormal network activities more accurately. To accomplish this goal, the study proposes an Intrusion Analysis System for detecting Denial of service (DoS) network attacks using machine learning. The accuracy rate of the proposed method using random forest was demonstrated in our experimental results. It was discovered that the accuracy rate with each dataset is greater than 98.8 percent when compared to traditional approaches. Furthermore, when features are selected, the detection time is significantly reduced.
2022-03-25
Das, Indrajit, Singh, Shalini, Sarkar, Ayantika.  2021.  Serial and Parallel based Intrusion Detection System using Machine Learning. 2021 Devices for Integrated Circuit (DevIC). :340—344.

Cyberattacks have been the major concern with the growing advancement in technology. Complex security models have been developed to combat these attacks, yet none exhibit a full-proof performance. Recently, several machine learning (ML) methods have gained significant popularity in offering effective and efficient intrusion detection schemes which assist in proactive detection of multiple network intrusions, such as Denial of Service (DoS), Probe, Remote to User (R2L), User to Root attack (U2R). Multiple research works have been surveyed based on adopted ML methods (either signature-based or anomaly detection) and some of the useful observations, performance analysis and comparative study are highlighted in this paper. Among the different ML algorithms in survey, PSO-SVM algorithm has shown maximum accuracy. Using RBF-based classifier and C-means clustering algorithm, a new model i.e., combination of serial and parallel IDS is proposed in this paper. The detection rate to detect known and unknown intrusion is 99.5% and false positive rate is 1.3%. In PIDS (known intrusion classifier), the detection rate for DOS, probe, U2R and R2L is 99.7%, 98.8%, 99.4% and 98.5% and the False positive rate is 0.6%, 0.2%, 3% and 2.8% respectively. In SIDS (unknown intrusion classifier), the rate of intrusion detection is 99.1% and false positive rate is 1.62%. This proposed model has known intrusion detection accuracy similar to PSO - SVM and is better than all other models. Finally the future research directions relevant to this domain and contributions have been discussed.

2022-03-23
Agana, Moses Adah, Edu, Joseph Ikpabi.  2021.  Predicting Cyber Attacks in a Proxy Server using Support Vector Machine (SVM) Learning Algorithm. 2021 IST-Africa Conference (IST-Africa). :1–11.
This study used the support vector machine (SVM) algorithm to predict Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks on a proxy server. Proxy-servers are prone to attacks such as DoS and DDoS and existing detection and prediction systems are inefficient. Three convex optimization problems using the Gaussian, linear and non-linear kernel methods were solved using the SVM module to detect the attacks. The SVM module and proxy server were implemented in Python and javascript respectively and made to run on a local network. Four other computers running on the same network where made to each communicate with the proxy server (two dedicated to attack the server). The server was able to detect and filter out the malicious requests from the attacking clients. Hence, the SVM module can effectively predict cyber attacks and can be integrated into any server to detect such attacks for improved security.
2022-03-14
Nur, Abdullah Yasin.  2021.  Combating DDoS Attacks with Fair Rate Throttling. 2021 IEEE International Systems Conference (SysCon). :1–8.
Distributed Denial of Service (DDoS) attacks are among the most harmful cyberattack types in the Internet. The main goal of a DDoS defense mechanism is to reduce the attack's effect as close as possible to their sources to prevent malicious traffic in the Internet. In this work, we examine the DDoS attacks as a rate management and congestion control problem and propose a collaborative fair rate throttling mechanism to combat DDoS attacks. Additionally, we propose anomaly detection mechanisms to detect attacks at the victim site, early attack detection mechanisms by intermediate Autonomous Systems (ASes), and feedback mechanisms between ASes to achieve distributed defense against DDoS attacks. To reduce additional vulnerabilities for the feedback mechanism, we use a secure, private, and authenticated communication channel between AS monitors to control the process. Our mathematical model presents proactive resource management, where the victim site sends rate adjustment requests to upstream routers. We conducted several experiments using a real-world dataset to demonstrate the efficiency of our approach under DDoS attacks. Our results show that the proposed method can significantly reduce the impact of DDoS attacks with minimal overhead to routers. Moreover, the proposed anomaly detection techniques can help ASes to detect possible attacks and early attack detection by intermediate ASes.
2022-01-10
Allagi, Shridhar, Rachh, Rashmi, Anami, Basavaraj.  2021.  A Robust Support Vector Machine Based Auto-Encoder for DoS Attacks Identification in Computer Networks. 2021 International Conference on Intelligent Technologies (CONIT). :1–6.
An unprecedented upsurge in the number of cyberattacks and threats is the corollary of ubiquitous internet connectivity. Among a variety of threats and attacks, Denial of Service (DoS) attacks are crucial and conventional mechanisms currently being used for detection/ identification of these attacks are not adequate. The use of real-time and robust mechanisms is the way to handle this. Machine learning-based techniques have been extensively used for this in the recent past. In this paper, a robust mechanism using Support Vector Machine Based Auto-Encoder is proposed for identifying DoS attacks. The proposed technique is tested on the CICIDS dataset and has given 99.32 % accuracy for DoS attacks. To study the effect of the number of features on the performance of the technique, a discriminant component analysis is deployed for feature reduction and independent experiments, namely SVM with 25 features, SVM with 30 features, SVM with 35 features, and PCA-SVM with 25 features, are conducted. From the experiments, it is observed that AE-SVM has performed better than others.
2021-10-12
Zhou, Yimin, Zhang, Kai.  2020.  DoS Vulnerability Verification of IPSec VPN. 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :698–702.
This paper analyzes the vulnerability in the process of key negotiation between the main mode and aggressive mode of IKEv1 protocol in IPSec VPN, and proposes a DOS attack method based on OSPF protocol adjacent route spoofing. The experiment verifies the insecurity of IPSec VPN using IKEv1 protocol. This attack method has the advantages of lower cost and easier operation compared with using botnet.
2021-09-21
Brzezinski Meyer, Maria Laura, Labit, Yann.  2020.  Combining Machine Learning and Behavior Analysis Techniques for Network Security. 2020 International Conference on Information Networking (ICOIN). :580–583.
Network traffic attacks are increasingly common and varied, this is a big problem especially when the target network is centralized. The creation of IDS (Intrusion Detection Systems) capable of detecting various types of attacks is necessary. Machine learning algorithms are widely used in the classification of data, bringing a good result in the area of computer networks. In addition, the analysis of entropy and distance between data sets are also very effective in detecting anomalies. However, each technique has its limitations, so this work aims to study their combination in order to improve their performance and create a new intrusion detection system capable of well detect some of the most common attacks. Reliability indices will be used as metrics to the combination decision and they will be updated in each new dataset according to the decision made earlier.
2021-08-17
Praptodiyono, Supriyanto, Jauhari, Moh., Fahrizal, Rian, Hasbullah, Iznan H., Osman, Azlan, Ul Rehman, Shafiq.  2020.  Integration of Firewall and IDS on Securing Mobile IPv6. 2020 2nd International Conference on Industrial Electrical and Electronics (ICIEE). :163–168.
The number of Mobile device users in the word has evolved rapidly. Many internet users currently want to connect the internet for all utilities automatically. One of the technologies in the IPv6 network, which supports data access from moving users, is IPv6 Mobile protocol. In its mobility, the users on a range of networks can move the range to another network. High demand for this technology will interest to a hacker or a cracker to carry out an attack. One of them is a DoS attack that compromises a target to denial its services. A firewall is usually used to protect networks from external attacks. However, since the firewall based on the attacker database, the unknown may not be detected. In order to address the obstacle, a detection tool could be used. In this research, IDS as an intrusion detection tool was integrated with a firewall to be implemented in IPv6 Mobile to stop the DoS attack. The results of some experiments showed that the integration system could block the attack at 0.9 s in Correspondent Node and 1.2 s in Home Agent. The blocked attack can decrease the network throughput up to 27.44% when a Mobile Node in Home Agent, 28,87% when the Mobile Node in a Foreign Network. The final result of the blocked attack is reducing the average CPU utilization up to 30.99%.
2021-08-02
Mustafa, Ahmed Shamil, Hamdi, Mustafa Maad, Mahdi, Hussain Falih, Abood, Mohammed Salah.  2020.  VANET: Towards Security Issues Review. 2020 IEEE 5th International Symposium on Telecommunication Technologies (ISTT). :151–156.
The Ad-hoc vehicle networks (VANETs) recently stressed communications and networking technologies. VANETs vary from MANETs in tasks, obstacles, system architecture and operation. Smart vehicles and RSUs communicate through unsafe wireless media. By nature, they are vulnerable to threats that can lead to life-threatening circumstances. Due to potentially bad impacts, security measures are needed to recognize these VANET assaults. In this review paper of VANET security, the new VANET approaches are summarized by addressing security complexities. Second, we're reviewing these possible threats and literature recognition mechanisms. Finally, the attacks and their effects are identified and clarified and the responses addressed together.
2021-05-03
Raj A.G.R., Rahul, Sunitha, R., Prasad, H.B..  2020.  Mitigating DDoS Flooding Attacks with Dynamic Path Identifiers in Wireless Network. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). :869–874.
The usage of wireless devices is increased from last decade due to its reliable, fast and easy transfer of data. Ensuring the security to these networks is a crucial thing. There are several types of network attacks, in this paper, DDoS attacks on networks and techniques, consequences, effects and prevention methods are focused on. The DDoS attack is carried out by multiple attackers on a system which floods the system with a greater number of incoming requests to the system. The destination system cannot immediately respond to the huge requests, due to this server crashes or halts. To detect, or to avoid such scenarios Intrusion prevention system is designed. The IPS block the network attacker at its first hop and thus reduce the malicious traffic near its source. Intrusion detection system prevents the attack without the prior knowledge of the attacker. The attack is detected at the router side and path is changed to transfer the files. The proposed model is designed to obtain the dynamic path for efficient transmission in wireless neworks.
2021-04-09
Fadhilah, D., Marzuki, M. I..  2020.  Performance Analysis of IDS Snort and IDS Suricata with Many-Core Processor in Virtual Machines Against Dos/DDoS Attacks. 2020 2nd International Conference on Broadband Communications, Wireless Sensors and Powering (BCWSP). :157—162.
The rapid development of technology makes it possible for a physical machine to be converted into a virtual machine, which can operate multiple operating systems that are running simultaneously and connected to the internet. DoS/DDoS attacks are cyber-attacks that can threaten the telecommunications sector because these attacks cause services to be disrupted and be difficult to access. There are several software tools for monitoring abnormal activities on the network, such as IDS Snort and IDS Suricata. From previous studies, IDS Suricata is superior to IDS Snort version 2 because IDS Suricata already supports multi-threading, while IDS Snort version 2 still only supports single-threading. This paper aims to conduct tests on IDS Snort version 3.0 which already supports multi-threading and IDS Suricata. This research was carried out on a virtual machine with 1 core, 2 core, and 4 core processor settings for CPU, memory, and capture packet attacks on IDS Snort version 3.0 and IDS Suricata. The attack scenario is divided into 2 parts: DoS attack scenario using 1 physical computer, and DDoS attack scenario using 5 physical computers. Based on overall testing, the results are: In general, IDS Snort version 3.0 is better than IDS Suricata. This is based on the results when using a maximum of 4 core processor, in which IDS Snort version 3.0 CPU usage is stable at 55% - 58%, a maximum memory of 3,000 MB, can detect DoS attacks with 27,034,751 packets, and DDoS attacks with 36,919,395 packets. Meanwhile, different results were obtained by IDS Suricata, in which CPU usage is better compared to IDS Snort version 3.0 with only 10% - 40% usage, and a maximum memory of 1,800 MB. However, the capabilities of detecting DoS attacks are smaller with 3,671,305 packets, and DDoS attacks with a total of 7,619,317 packets on a TCP Flood attack test.
2020-09-11
Arvind, S, Narayanan, V Anantha.  2019.  An Overview of Security in CoAP: Attack and Analysis. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :655—660.
Over the last decade, a technology called Internet of Things (IoT) has been evolving at a rapid pace. It enables the development of endless applications in view of availability of affordable components which provide smart ecosystems. The IoT devices are constrained devices which are connected to the internet and perform sensing tasks. Each device is identified by their unique address and also makes use of the Constrained Application Protocol (CoAP) as one of the main web transfer protocols. It is an application layer protocol which does not maintain secure channels to transfer information. For authentication and end-to-end security, Datagram Transport Layer Security (DTLS) is one of the possible approaches to boost the security aspect of CoAP, in addition to which there are many suggested ways to protect the transmission of sensitive information. CoAP uses DTLS as a secure protocol and UDP as a transfer protocol. Therefore, the attacks on UDP or DTLS could be assigned as a CoAP attack. An attack on DTLS could possibly be launched in a single session and a strong authentication mechanism is needed. Man-In-The-Middle attack is one the peak security issues in CoAP as cited by Request For Comments(RFC) 7252, which encompasses attacks like Sniffing, Spoofing, Denial of Service (DoS), Hijacking, Cross-Protocol attacks and other attacks including Replay attacks and Relay attacks. In this work, a client-server architecture is setup, whose end devices communicate using CoAP. Also, a proxy system was installed across the client side to launch an active interception between the client and the server. The work will further be enhanced to provide solutions to mitigate these attacks.
2020-08-03
POLAT, Hüseyin, POLAT, Onur, SÖĞÜT, Esra, ERDEM, O. Ayhan.  2019.  Performance Analysis of Between Software Defined Wireless Network and Mobile Ad Hoc Network Under DoS Attack. 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). :1–5.

The traditional network used today is unable to meet the increasing needs of technology in terms of management, scaling, and performance criteria. Major developments in information and communication technologies show that the traditional network structure is quite lacking in meeting the current requirements. In order to solve these problems, Software Defined Network (SDN) is capable of responding as it, is flexible, easier to manage and offers a new structure. Software Defined Networks have many advantages over traditional network structure. However, it also brings along many security threats due to its new architecture. For example, the DoS attack, which overloads the controller's processing and communication capacity in the SDN structure, is a significant threat. Mobile Ad Hoc Network (MANET), which is one of the wireless network technologies, is different from SDN technology. MANET is exposed to various attacks such as DoS due to its security vulnerabilities. The aim of the study is to reveal the security problems in SDN structure presented with a new understanding. This is based on the currently used network structures such as MANET. The study consists of two parts. First, DoS attacks against the SDN controller were performed. Different SDN controllers were used for more accurate results. Second, MANET was established and DoS attacks against this network were performed. Different MANET routing protocols were used for more accurate results. According to the scenario, attacks were performed and the performance values of the networks were tested. The reason for using two different networks in this study is to compare the performance values of these networks at the time of attack. According to the test results, both networks were adversely affected by the attacks. It was observed that network performance decreased in MANET structure but there was no network interruption. The SDN controller becomes dysfunctional and collapses as a result of the attack. While the innovations offered by the SDN structure are expected to provide solutions to many problems in traditional networks, there are still many vulnerabilities for network security.

2020-06-29
Kaljic, Enio, Maric, Almir, Njemcevic, Pamela.  2019.  DoS attack mitigation in SDN networks using a deeply programmable packet-switching node based on a hybrid FPGA/CPU data plane architecture. 2019 XXVII International Conference on Information, Communication and Automation Technologies (ICAT). :1–6.
The application of the concept of software-defined networks (SDN) has, on the one hand, led to the simplification and reduction of switches price, and on the other hand, has created a significant number of problems related to the security of the SDN network. In several studies was noted that these problems are related to the lack of flexibility and programmability of the data plane, which is likely first to suffer potential denial-of-service (DoS) attacks. One possible way to overcome this problem is to increase the flexibility of the data plane by increasing the depth of programmability of the packet-switching nodes below the level of flow table management. Therefore, this paper investigates the opportunity of using the architecture of deeply programmable packet-switching nodes (DPPSN) in the implementation of a firewall. Then, an architectural model of the firewall based on a hybrid FPGA/CPU data plane architecture has been proposed and implemented. Realized firewall supports three models of DoS attacks mitigation: DoS traffic filtering on the output interface, DoS traffic filtering on the input interface, and DoS attack redirection to the honeypot. Experimental evaluation of the implemented firewall has shown that DoS traffic filtering at the input interface is the best strategy for DoS attack mitigation, which justified the application of the concept of deep network programmability.
2020-05-11
Nikolov, Dimitar, Kordev, Iliyan, Stefanova, Stela.  2018.  Concept for network intrusion detection system based on recurrent neural network classifier. 2018 IEEE XXVII International Scientific Conference Electronics - ET. :1–4.
This paper presents the effects of problem based learning project on a high-school student in Technology school “Electronic systems” associated with Technical University Sofia. The problem is creating an intrusion detection system for Apache HTTP Server with duration 6 months. The intrusion detection system is based on a recurrent neural network classifier namely long-short term memory units.
Vashist, Abhishek, Keats, Andrew, Pudukotai Dinakarrao, Sai Manoj, Ganguly, Amlan.  2019.  Securing a Wireless Network-on-Chip Against Jamming Based Denial-of-Service Attacks. 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :320–325.
Wireless Networks-on-Chips (NoCs) have emerged as a panacea to the non-scalable multi-hop data transmission paths in traditional wired NoC architectures. Using low-power transceivers in NoC switches, novel Wireless NoC (WiNoC) architectures have been shown to achieve higher energy efficiency with improved peak bandwidth and reduced on-chip data transfer latency. However, using wireless interconnects for data transfer within a chip makes the on-chip communications vulnerable to various security threats from either external attackers or internal hardware Trojans (HTs). In this work, we propose a mechanism to make the wireless communication in a WiNoC secure against persistent jamming based Denial-of-Service attacks from both external and internal attackers. Persistent jamming attacks on the on-chip wireless medium will cause interference in data transfer over the duration of the attack resulting in errors in contiguous bits, known as burst errors. Therefore, we use a burst error correction code to monitor the rate of burst errors received over the wireless medium and deploy a Machine Learning (ML) classifier to detect the persistent jamming attack and distinguish it from random burst errors. In the event of jamming attack, alternate routing strategies are proposed to avoid the DoS attack over the wireless medium, so that a secure data transfer can be sustained even in the presence of jamming. We evaluate the proposed technique on a secure WiNoC in the presence of DoS attacks. It has been observed that with the proposed defense mechanisms, WiNoC can outperform a wired NoC even in presence of attacks in terms of performance and security. On an average, 99.87% attack detection was achieved with the chosen ML Classifiers. A bandwidth degradation of \textbackslashtextless;3% is experienced in the event of internal attack, while the wireless interconnects are disabled in the presence of an external attacker.
2020-01-13
Potrino, Giuseppe, de Rango, Floriano, Santamaria, Amilcare Francesco.  2019.  Modeling and evaluation of a new IoT security system for mitigating DoS attacks to the MQTT broker. 2019 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
In recent years, technology use has assumed an important role in the support of human activities. Intellectual work has become the main preferred human activity, while structured activities are going to become ever more automatized for increasing their efficiency. For this reason, we assist to the diffusion of ever more innovative devices able to face new emergent problems. These devices can interact with the environment and each other autonomously, taking decisions even without human control. This is the Internet of Things (IoT) phenomenon, favored by low cost, high mobility, high interaction and low power devices. This spread of devices has become uncontrolled, but security in this context continues to increase slowly. The purpose of this work is to model and evaluate a new IoT security system. The context is based on a generic IoT system in the presence of lightweight actuator and sensor nodes exchanging messages through Message Queue Telemetry Transport (MQTT) protocol. This work aims to increase the security of this protocol at application level, particularly mitigating Denial of Service (DoS) attacks. The system is based on the use of a host Intrusion Detection System (IDS) which applies a threshold based packet discarding policy to the different topics defined through MQTT.
2019-06-10
Alsumayt, A., Haggerty, J., Lotfi, A..  2018.  Evaluation of Detection Method to Mitigate DoS Attacks in MANETs. 2018 1st International Conference on Computer Applications Information Security (ICCAIS). :1–5.

A Mobile ad hoc Network (MANET) is a self-configure, dynamic, and non-fixed infrastructure that consists of many nodes. These nodes communicate with each other without an administrative point. However, due to its nature MANET becomes prone to many attacks such as DoS attacks. DoS attack is a severe as it prevents legitimate users from accessing to their authorised services. Monitoring, Detection, and rehabilitation (MrDR) method is proposed to detect DoS attacks. MrDR method is based on calculating different trust values as nodes can be trusted or not. In this paper, we evaluate the MrDR method which detect DoS attacks in MANET and compare it with existing method Trust Enhanced Anonymous on-demand routing Protocol (TEAP) which is also based on trust concept. We consider two factors to compare the performance of the proposed method to TEAP method: packet delivery ratio and network overhead. The results confirm that the MrDR method performs better in network performance compared to TEAP method.

2019-02-08
Csikor, Levente, Rothenberg, Christian, Pezaros, Dimitrios P., Schmid, Stefan, Toka, László, Retvari, Gabor.  2018.  Policy Injection: A Cloud Dataplane DoS Attack. Proceedings of the ACM SIGCOMM 2018 Conference on Posters and Demos. :147-149.

Enterprises continue to migrate their services to the cloud on a massive scale, but the increasing attack surface has become a natural target for malevolent actors. We show policy injection, a novel algorithmic complexity attack that enables a tenant to add specially tailored ACLs into the data center fabric to mount a denial-of-service attack through exploiting the built-in security mechanisms of the cloud management systems (CMS). Our insight is that certain ACLs, when fed with special covert packets by an attacker, may be very difficult to evaluate, leading to an exhaustion of cloud resources. We show how a tenant can inject seemingly harmless ACLs into the cloud data plane to abuse an algorithmic deficiency in the most popular cloud hypervisor switch, Open vSwitch, and reduce its effective peak performance by 80–90%, and, in certain cases, denying network access altogether.

2018-11-19
Pomsathit, A..  2017.  Performance Analysis of IDS with Honey Pot on New Media Broadcasting. 2017 International Conference on Circuits, Devices and Systems (ICCDS). :201–204.

This research was an experimental analysis of the Intrusion Detection Systems(IDS) with Honey Pot conducting through a study of using Honey Pot in tricking, delaying or deviating the intruder to attack new media broadcasting server for IPTV system. Denial of Service(DoS) over wire network and wireless network consisted of three types of attacks: TCP Flood, UDP Flood and ICMP Flood by Honey Pot, where the Honeyd would be used. In this simulation, a computer or a server in the network map needed to be secured by the inactivity firewalls or other security tools for the intrusion of the detection systems and Honey Pot. The network intrusion detection system used in this experiment was SNORT (www.snort.org) developed in the form of the Open Source operating system-Linux. The results showed that, from every experiment, the internal attacks had shown more threat than the external attacks. In addition, attacks occurred through LAN network posted 50% more disturb than attacks occurred on WIFI. Also, the external attacks through LAN posted 95% more attacks than through WIFI. However, the number of attacks presented by TCP, UDP and ICMP were insignificant. This result has supported the assumption that Honey Pot was able to help detecting the intrusion. In average, 16% of the attacks was detected by Honey Pot in every experiment.

2018-10-26
Aljumah, A., Ahanger, T. A..  2018.  Fog computing and security issues: A review. 2018 7th International Conference on Computers Communications and Control (ICCCC). :237–239.

The paradigm of fog computing has set new trends and heights in the modern world networking and have overcome the major technical complexities of cloud computing. It is not a replacement of cloud computing technology but it just adds feasible advanced characteristics to existing cloud computing paradigm.fog computing not only provide storage, networking and computing services but also provide a platform for IoT (internet of things). However, the fog computing technology also arise the threat to privacy and security of the data and services. The existing security and privacy mechanisms of the cloud computing cannot be applied to the fog computing directly due to its basic characteristics of large-scale geo-distribution, mobility and heterogeneity. This article provides an overview of the present existing issues and challenges in fog computing.