Biblio
Cyberattacks have been the major concern with the growing advancement in technology. Complex security models have been developed to combat these attacks, yet none exhibit a full-proof performance. Recently, several machine learning (ML) methods have gained significant popularity in offering effective and efficient intrusion detection schemes which assist in proactive detection of multiple network intrusions, such as Denial of Service (DoS), Probe, Remote to User (R2L), User to Root attack (U2R). Multiple research works have been surveyed based on adopted ML methods (either signature-based or anomaly detection) and some of the useful observations, performance analysis and comparative study are highlighted in this paper. Among the different ML algorithms in survey, PSO-SVM algorithm has shown maximum accuracy. Using RBF-based classifier and C-means clustering algorithm, a new model i.e., combination of serial and parallel IDS is proposed in this paper. The detection rate to detect known and unknown intrusion is 99.5% and false positive rate is 1.3%. In PIDS (known intrusion classifier), the detection rate for DOS, probe, U2R and R2L is 99.7%, 98.8%, 99.4% and 98.5% and the False positive rate is 0.6%, 0.2%, 3% and 2.8% respectively. In SIDS (unknown intrusion classifier), the rate of intrusion detection is 99.1% and false positive rate is 1.62%. This proposed model has known intrusion detection accuracy similar to PSO - SVM and is better than all other models. Finally the future research directions relevant to this domain and contributions have been discussed.
The traditional network used today is unable to meet the increasing needs of technology in terms of management, scaling, and performance criteria. Major developments in information and communication technologies show that the traditional network structure is quite lacking in meeting the current requirements. In order to solve these problems, Software Defined Network (SDN) is capable of responding as it, is flexible, easier to manage and offers a new structure. Software Defined Networks have many advantages over traditional network structure. However, it also brings along many security threats due to its new architecture. For example, the DoS attack, which overloads the controller's processing and communication capacity in the SDN structure, is a significant threat. Mobile Ad Hoc Network (MANET), which is one of the wireless network technologies, is different from SDN technology. MANET is exposed to various attacks such as DoS due to its security vulnerabilities. The aim of the study is to reveal the security problems in SDN structure presented with a new understanding. This is based on the currently used network structures such as MANET. The study consists of two parts. First, DoS attacks against the SDN controller were performed. Different SDN controllers were used for more accurate results. Second, MANET was established and DoS attacks against this network were performed. Different MANET routing protocols were used for more accurate results. According to the scenario, attacks were performed and the performance values of the networks were tested. The reason for using two different networks in this study is to compare the performance values of these networks at the time of attack. According to the test results, both networks were adversely affected by the attacks. It was observed that network performance decreased in MANET structure but there was no network interruption. The SDN controller becomes dysfunctional and collapses as a result of the attack. While the innovations offered by the SDN structure are expected to provide solutions to many problems in traditional networks, there are still many vulnerabilities for network security.
A Mobile ad hoc Network (MANET) is a self-configure, dynamic, and non-fixed infrastructure that consists of many nodes. These nodes communicate with each other without an administrative point. However, due to its nature MANET becomes prone to many attacks such as DoS attacks. DoS attack is a severe as it prevents legitimate users from accessing to their authorised services. Monitoring, Detection, and rehabilitation (MrDR) method is proposed to detect DoS attacks. MrDR method is based on calculating different trust values as nodes can be trusted or not. In this paper, we evaluate the MrDR method which detect DoS attacks in MANET and compare it with existing method Trust Enhanced Anonymous on-demand routing Protocol (TEAP) which is also based on trust concept. We consider two factors to compare the performance of the proposed method to TEAP method: packet delivery ratio and network overhead. The results confirm that the MrDR method performs better in network performance compared to TEAP method.
Enterprises continue to migrate their services to the cloud on a massive scale, but the increasing attack surface has become a natural target for malevolent actors. We show policy injection, a novel algorithmic complexity attack that enables a tenant to add specially tailored ACLs into the data center fabric to mount a denial-of-service attack through exploiting the built-in security mechanisms of the cloud management systems (CMS). Our insight is that certain ACLs, when fed with special covert packets by an attacker, may be very difficult to evaluate, leading to an exhaustion of cloud resources. We show how a tenant can inject seemingly harmless ACLs into the cloud data plane to abuse an algorithmic deficiency in the most popular cloud hypervisor switch, Open vSwitch, and reduce its effective peak performance by 80–90%, and, in certain cases, denying network access altogether.
This research was an experimental analysis of the Intrusion Detection Systems(IDS) with Honey Pot conducting through a study of using Honey Pot in tricking, delaying or deviating the intruder to attack new media broadcasting server for IPTV system. Denial of Service(DoS) over wire network and wireless network consisted of three types of attacks: TCP Flood, UDP Flood and ICMP Flood by Honey Pot, where the Honeyd would be used. In this simulation, a computer or a server in the network map needed to be secured by the inactivity firewalls or other security tools for the intrusion of the detection systems and Honey Pot. The network intrusion detection system used in this experiment was SNORT (www.snort.org) developed in the form of the Open Source operating system-Linux. The results showed that, from every experiment, the internal attacks had shown more threat than the external attacks. In addition, attacks occurred through LAN network posted 50% more disturb than attacks occurred on WIFI. Also, the external attacks through LAN posted 95% more attacks than through WIFI. However, the number of attacks presented by TCP, UDP and ICMP were insignificant. This result has supported the assumption that Honey Pot was able to help detecting the intrusion. In average, 16% of the attacks was detected by Honey Pot in every experiment.
The paradigm of fog computing has set new trends and heights in the modern world networking and have overcome the major technical complexities of cloud computing. It is not a replacement of cloud computing technology but it just adds feasible advanced characteristics to existing cloud computing paradigm.fog computing not only provide storage, networking and computing services but also provide a platform for IoT (internet of things). However, the fog computing technology also arise the threat to privacy and security of the data and services. The existing security and privacy mechanisms of the cloud computing cannot be applied to the fog computing directly due to its basic characteristics of large-scale geo-distribution, mobility and heterogeneity. This article provides an overview of the present existing issues and challenges in fog computing.