Biblio
The number of detected and analyzed Advanced Persistent Threat (APT) campaigns increased over the last years. Two of the main objectives of such campaigns are to maintain long-term access to the environment of the target and to stay undetected. To achieve these goals the attackers use sophisticated and customized techniques for the lateral movement, to ensure that these activities are not detected by existing security systems. During an investigation of an APT campaign all stages of it are relevant to clarify important details like the initial infection vector or the compromised systems and credentials. Most of the currently used approaches, which are utilized within security systems, are not able to detect the different stages of a complex attack and therefore a comprehensive security investigation is needed. In this paper we describe a concept for a Security Investigation Framework (SIF) that supports the analysis and the tracing of multi-stage APTs. The concept includes different automatic and semi-automatic approaches that support the investigation of such attacks. Furthermore, the framework leverages different information sources, like log files and details from forensic investigations and malware analyses, to give a comprehensive overview of the different stages of an attack. The overall objective of the SIF is to improve the efficiency of investigations and reveal undetected details of an attack.
Feedback loss can severely degrade the overall system performance, in addition, it can affect the control and computation of the Cyber-physical Systems (CPS). CPS hold enormous potential for a wide range of emerging applications including stochastic and time-critical traffic patterns. Stochastic data has a randomness in its nature which make a great challenge to maintain the real-time control whenever the data is lost. In this paper, we propose a data recovery scheme, called the Efficient Temporal and Spatial Data Recovery (ETSDR) scheme for stochastic incomplete feedback of CPS. In this scheme, we identify the temporal model based on the traffic patterns and consider the spatial effect of the nearest neighbor. Numerical results reveal that the proposed ETSDR outperforms both the weighted prediction (WP) and the exponentially weighted moving average (EWMA) algorithm regardless of the increment percentage of missing data in terms of the root mean square error, the mean absolute error, and the integral of absolute error.
Cloud computing is gaining ground and becoming one of the fast growing segments of the IT industry. However, if its numerous advantages are mainly used to support a legitimate activity, it is now exploited for a use it was not meant for: malicious users leverage its power and fast provisioning to turn it into an attack support. Botnets supporting DDoS attacks are among the greatest beneficiaries of this malicious use since they can be setup on demand and at very large scale without requiring a long dissemination phase nor an expensive deployment costs. For cloud service providers, preventing their infrastructure from being turned into an Attack as a Service delivery model is very challenging since it requires detecting threats at the source, in a highly dynamic and heterogeneous environment. In this paper, we present the result of an experiment campaign we performed in order to understand the operational behavior of a botcloud used for a DDoS attack. The originality of our work resides in the consideration of system metrics that, while never considered for state-of-the-art botnets detection, can be leveraged in the context of a cloud to enable a source based detection. Our study considers both attacks based on TCP-flood and UDP-storm and for each of them, we provide statistical results based on a principal component analysis, that highlight the recognizable behavior of a botcloud as compared to other legitimate workloads.
An increasing number of people are using online social networking services (SNSs), and a significant amount of information related to experiences in consumption is shared in this new media form. Text mining is an emerging technique for mining useful information from the web. We aim at discovering in particular tweets semantic patterns in consumers' discussions on social media. Specifically, the purposes of this study are twofold: 1) finding similarity and dissimilarity between two sets of textual documents that include consumers' sentiment polarities, two forms of positive vs. negative opinions and 2) driving actual content from the textual data that has a semantic trend. The considered tweets include consumers' opinions on US retail companies (e.g., Amazon, Walmart). Cosine similarity and K-means clustering methods are used to achieve the former goal, and Latent Dirichlet Allocation (LDA), a popular topic modeling algorithm, is used for the latter purpose. This is the first study which discover semantic properties of textual data in consumption context beyond sentiment analysis. In addition to major findings, we apply LDA (Latent Dirichlet Allocations) to the same data and drew latent topics that represent consumers' positive opinions and negative opinions on social media.
Tracking moving objects is a task of the utmost importance to the defence community. As this task requires high accuracy, rather than employing a single detector, it has become common to use multiple ones. In such cases, the tracks produced by these detectors need to be correlated (if they belong to the same sensing modality) or associated (if they were produced by different sensing modalities). In this work, we introduce Computational-Intelligence-based methods for correlating and associating various contacts and tracks pertaining to maritime vessels in an area of interest. Fuzzy k-Nearest Neighbours will be used to conduct track correlation and Fuzzy C-Means clustering will be applied for association. In that way, the uncertainty of the track correlation and association is handled through fuzzy logic. To better model the state of the moving target, the traditional Kalman Filter will be extended using an Echo State Network. Experimental results on five different types of sensing systems will be discussed to justify the choices made in the development of our approach. In particular, we will demonstrate the judiciousness of using Fuzzy k-Nearest Neighbours and Fuzzy C-Means on our tracking system and show how the extension of the traditional Kalman Filter by a recurrent neural network is superior to its extension by other methods.
In view of the difficulty in selecting wavelet base and decomposition level for wavelet-based de-noising method, this paper proposes an adaptive de-noising method based on Ensemble Empirical Mode Decomposition (EEMD). The autocorrelation, cross-correlation method is used to adaptively find the signal-to-noise boundary layer of the EEMD in this method. Then the noise dominant layer is filtered directly and the signal dominant layer is threshold de-noised. Finally, the de-noising signal is reconstructed by each layer component which is de-noised. This method solves the problem of mode mixing in Empirical Mode Decomposition (EMD) by using EEMD and combines the advantage of wavelet threshold. In this paper, we focus on the analysis and verification of the correctness of the adaptive determination of the noise dominant layer. The simulation experiment results prove that this de-noising method is efficient and has good adaptability.
This paper presents a unified approach for the detection of network anomalies. Current state of the art methods are often able to detect one class of anomalies at the cost of others. Our approach is based on using a Linear Dynamical System (LDS) to model network traffic. An LDS is equivalent to Hidden Markov Model (HMM) for continuous-valued data and can be computed using incremental methods to manage high-throughput (volume) and velocity that characterizes Big Data. Detailed experiments on synthetic and real network traces shows a significant improvement in detection capability over competing approaches. In the process we also address the issue of robustness of network anomaly detection systems in a principled fashion.
During recent years, establishing proper metrics for measuring system security has received increasing attention. Security logs contain vast amounts of information which are essential for creating many security metrics. Unfortunately, security logs are known to be very large, making their analysis a difficult task. Furthermore, recent security metrics research has focused on generic concepts, and the issue of collecting security metrics with log analysis methods has not been well studied. In this paper, we will first focus on using log analysis techniques for collecting technical security metrics from security logs of common types (e.g., Network IDS alarm logs, workstation logs, and Net flow data sets). We will also describe a production framework for collecting and reporting technical security metrics which is based on novel open-source technologies for big data.
Network traffic is a rich source of information for security monitoring. However the increasing volume of data to treat raises issues, rendering holistic analysis of network traffic difficult. In this paper we propose a solution to cope with the tremendous amount of data to analyse for security monitoring perspectives. We introduce an architecture dedicated to security monitoring of local enterprise networks. The application domain of such a system is mainly network intrusion detection and prevention, but can be used as well for forensic analysis. This architecture integrates two systems, one dedicated to scalable distributed data storage and management and the other dedicated to data exploitation. DNS data, NetFlow records, HTTP traffic and honeypot data are mined and correlated in a distributed system that leverages state of the art big data solution. Data correlation schemes are proposed and their performance are evaluated against several well-known big data framework including Hadoop and Spark.
The availability of sophisticated source attribution techniques raises new concerns about privacy and anonymity of photographers, activists, and human right defenders who need to stay anonymous while spreading their images and videos. Recently, the use of seam-carving, a content-aware resizing method, has been proposed to anonymize the source camera of images against the well-known photoresponse nonuniformity (PRNU)-based source attribution technique. In this paper, we provide an analysis of the seam-carving-based source camera anonymization method by determining the limits of its performance introducing two adversarial models. Our analysis shows that the effectiveness of the deanonymization attacks depend on various factors that include the parameters of the seam-carving method, strength of the PRNU noise pattern of the camera, and an adversary's ability to identify uncarved image blocks in a seam-carved image. Our results show that, for the general case, there should not be many uncarved blocks larger than the size of 50×50 pixels for successful anonymization of the source camera.
In bound applications, the locations of events reportable by a device network have to be compelled to stay anonymous. That is, unauthorized observers should be unable to notice the origin of such events by analyzing the network traffic. The authors analyze 2 forms of downsides: Communication overhead and machine load problem. During this paper, the authors give a new framework for modeling, analyzing, and evaluating obscurity in device networks. The novelty of the proposed framework is twofold: initial, it introduces the notion of "interval indistinguishability" and provides a quantitative live to model obscurity in wireless device networks; second, it maps supply obscurity to the applied mathematics downside the authors showed that the present approaches for coming up with statistically anonymous systems introduce correlation in real intervals whereas faux area unit unrelated. The authors show however mapping supply obscurity to consecutive hypothesis testing with nuisance Parameters ends up in changing the matter of exposing non-public supply data into checking out associate degree applicable knowledge transformation that removes or minimize the impact of the nuisance data victimization sturdy cryptography algorithmic rule. By doing therefore, the authors remodeled the matter of analyzing real valued sample points to binary codes, that opens the door for committal to writing theory to be incorporated into the study of anonymous networks. In existing work, unable to notice unauthorized observer in network traffic. However this work in the main supported enhances their supply obscurity against correlation check, the most goal of supply location privacy is to cover the existence of real events.
In recent years, Wireless Sensor Networks (WSNs) have become valuable assets to both the commercial and military communities with applications ranging from industrial automation and product tracking to intrusion detection at a hostile border. A typical WSN topology allows sensors to act as data sources that forward their measurements to a central sink or base station (BS). The unique role of the BS makes it a natural target for an adversary that desires to achieve the most impactful attack possible against a WSN. An adversary may employ traffic analysis techniques to identify the BS based on network traffic flow even when the WSN implements conventional security mechanisms. This motivates a need for WSN operators to achieve improved BS anonymity to protect the identity, role, and location of the BS. Although a variety of countermeasures have been proposed to improve BS anonymity, those techniques are typically evaluated based on a WSN that does not employ acknowledgements. In this paper we propose an enhanced evidence theory metric called Acknowledgement-Aware Evidence Theory (AAET) that more accurately characterizes BS anonymity in WSNs employing acknowledgements. We demonstrate AAET's improved robustness to a variety of configurations through simulation.
This paper presents a novel and efficient audio signal recognition algorithm with limited computational complexity. As the audio recognition system will be used in real world environment where background noises are high, conventional speech recognition techniques are not directly applicable, since they have a poor performance in these environments. So here, we introduce a new audio recognition algorithm which is optimized for mechanical sounds such as car horn, telephone ring etc. This is a hybrid time-frequency approach which makes use of acoustic fingerprint for the recognition of audio signal patterns. The limited computational complexity is achieved through efficient usage of both time domain and frequency domain in two different processing phases, detection and recognition respectively. And the transition between these two phases is carried out through a finite state machine(FSM)model. Simulation results shows that the algorithm effectively recognizes audio signals within a noisy environment.
Reduction of Quality (RoQ) attack is a stealthy denial of service attack. It can decrease or inhibit normal TCP flows in network. Victims are hard to perceive it as the final network throughput is decreasing instead of increasing during the attack. Therefore, the attack is strongly hidden and it is difficult to be detected by existing detection systems. Based on the principle of Time-Frequency analysis, we propose a two-stage detection algorithm which combines anomaly detection with misuse detection. In the first stage, we try to detect the potential anomaly by analyzing network traffic through Wavelet multiresolution analysis method. According to different time-domain characteristics, we locate the abrupt change points. In the second stage, we further analyze the local traffic around the abrupt change point. We extract the potential attack characteristics by autocorrelation analysis. By the two-stage detection, we can ultimately confirm whether the network is affected by the attack. Results of simulations and real network experiments demonstrate that our algorithm can detect RoQ attacks, with high accuracy and high efficiency.
The electric network frequency (ENF) criterion is a recently developed technique for audio timestamp identification, which involves the matching between extracted ENF signal and reference data. For nearly a decade, conventional matching criterion has been based on the minimum mean squared error (MMSE) or maximum correlation coefficient. However, the corresponding performance is highly limited by low signal-to-noise ratio, short recording durations, frequency resolution problems, and so on. This paper presents a threshold-based dynamic matching algorithm (DMA), which is capable of autocorrecting the noise affected frequency estimates. The threshold is chosen according to the frequency resolution determined by the short-time Fourier transform (STFT) window size. A penalty coefficient is introduced to monitor the autocorrection process and finally determine the estimated timestamp. It is then shown that the DMA generalizes the conventional MMSE method. By considering the mainlobe width in the STFT caused by limited frequency resolution, the DMA achieves improved identification accuracy and robustness against higher levels of noise and the offset problem. Synthetic performance analysis and practical experimental results are provided to illustrate the advantages of the DMA.
Cloud computing significantly increased the security threats because intruders can exploit the large amount of cloud resources for their attacks. However, most of the current security technologies do not provide early warnings about such attacks. This paper presents a Finite State Hidden Markov prediction model that uses an adaptive risk approach to predict multi-staged cloud attacks. The risk model measures the potential impact of a threat on assets given its occurrence probability. The attacks prediction model was integrated with our autonomous cloud intrusion detection framework (ACIDF) to raise early warnings about attacks to the controller so it can take proactive corrective actions before the attacks pose a serious security risk to the system. According to our experiments on DARPA 2000 dataset, the proposed prediction model has successfully fired the early warning alerts 39.6 minutes before the launching of the LLDDoS1.0 attack. This gives the auto response controller ample time to take preventive measures.
This article addresses trust in computer systems as a social phenomenon, which depends on the type of relationship that is established through the computer, or with other individuals. It starts by theoretically contextualizing trust, and then situates trust in the field of computer science. Then, describes the proposed model, which builds on what one perceives to be trustworthy and is influenced by a number of factors such as the history of participation and user's perceptions. It ends by situating the proposed model as a key contribution for leveraging trustful interactions and ends by proposing it used to serve as a complement to foster user's trust needs in what concerns Human-computer Iteration or Computermediated Interactions.
Cloud computing is gaining ground and becoming one of the fast growing segments of the IT industry. However, if its numerous advantages are mainly used to support a legitimate activity, it is now exploited for a use it was not meant for: malicious users leverage its power and fast provisioning to turn it into an attack support. Botnets supporting DDoS attacks are among the greatest beneficiaries of this malicious use since they can be setup on demand and at very large scale without requiring a long dissemination phase nor an expensive deployment costs. For cloud service providers, preventing their infrastructure from being turned into an Attack as a Service delivery model is very challenging since it requires detecting threats at the source, in a highly dynamic and heterogeneous environment. In this paper, we present the result of an experiment campaign we performed in order to understand the operational behavior of a botcloud used for a DDoS attack. The originality of our work resides in the consideration of system metrics that, while never considered for state-of-the-art botnets detection, can be leveraged in the context of a cloud to enable a source based detection. Our study considers both attacks based on TCP-flood and UDP-storm and for each of them, we provide statistical results based on a principal component analysis, that highlight the recognizable behavior of a botcloud as compared to other legitimate workloads.