Visible to the public Biblio

Found 158 results

Filters: Keyword is intrusion detection system  [Clear All Filters]
2023-09-20
Dixit, Utkarsh, Bhatia, Suman, Bhatia, Pramod.  2022.  Comparison of Different Machine Learning Algorithms Based on Intrusion Detection System. 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON). 1:667—672.
An IDS is a system that helps in detecting any kind of doubtful activity on a computer network. It is capable of identifying suspicious activities at both the levels i.e. locally at the system level and in transit at the network level. Since, the system does not have its own dataset as a result it is inefficient in identifying unknown attacks. In order to overcome this inefficiency, we make use of ML. ML assists in analysing and categorizing attacks on diverse datasets. In this study, the efficacy of eight machine learning algorithms based on KDD CUP99 is assessed. Based on our implementation and analysis, amongst the eight Algorithms considered here, Support Vector Machine (SVM), Random Forest (RF) and Decision Tree (DT) have the highest testing accuracy of which got SVM does have the highest accuracy
2023-08-18
Doraswamy, B., Krishna, K. Lokesh.  2022.  A Deep Learning Approach for Anomaly Detection in Industrial Control Systems. 2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS). :442—448.
An Industrial Control System (ICS) is essential in monitoring and controlling critical infrastructures such as safety and security. Internet of Things (IoT) in ICSs allows cyber-criminals to utilize systems' vulnerabilities towards deploying cyber-attacks. To distinguish risks and keep an eye on malicious activity in networking systems, An Intrusion Detection System (IDS) is essential. IDS shall be used by system admins to identify unwanted accesses by attackers in various industries. It is now a necessary component of each organization's security governance. The main objective of this intended work is to establish a deep learning-depended intrusion detection system that can quickly identify intrusions and other unwanted behaviors that have the potential to interfere with networking systems. The work in this paper uses One Hot encoder for preprocessing and the Auto encoder for feature extraction. On KDD99 CUP, a data - set for network intruding, we categorize the normal and abnormal data applying a Deep Convolutional Neural Network (DCNN), a deep learning-based methodology. The experimental findings demonstrate that, in comparison with SVM linear Kernel model, SVM RBF Kernel model, the suggested deep learning model operates better.
KK, Sabari, Shrivastava, Saurabh, V, Sangeetha..  2022.  Anomaly-based Intrusion Detection using GAN for Industrial Control Systems. 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1—6.
In recent years, cyber-attacks on modern industrial control systems (ICS) have become more common and it acts as a victim to various kind of attackers. The percentage of attacked ICS computers in the world in 2021 is 39.6%. To identify the anomaly in a large database system is a challenging task. Deep-learning model provides better solutions for handling the huge dataset with good accuracy. On the other hand, real time datasets are highly imbalanced with their sample proportions. In this research, GAN based model, a supervised learning method which generates new fake samples that is similar to real samples has been proposed. GAN based adversarial training would address the class imbalance problem in real time datasets. Adversarial samples are combined with legitimate samples and shuffled via proper proportion and given as input to the classifiers. The generated data samples along with the original ones are classified using various machine learning classifiers and their performances have been evaluated. Gradient boosting was found to classify with 98% accuracy when compared to other
2023-07-21
Singh, Kiran Deep, Singh, Prabhdeep, Tripathi, Vikas, Khullar, Vikas.  2022.  A Novel and Secure Framework to Detect Unauthorized Access to an Optical Fog-Cloud Computing Network. 2022 Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC). :618—622.
Securing optical edge devices across an optical network is a critical challenge for the technological capabilities of fog/cloud computing. Locating and blocking rogue devices from transmitting data frames in an optical network is a significant security problem due to their widespread distribution over the optical fog cloud. A malicious actor might simply compromise such a device and execute assaults that degrade the optical channel’s Quality. In this study, we advocate an innovative framework for the use of an optical network to facilitate cloud and fog computing in a safe environment. This framework is sustainable and able to detect hostile equipment in optical fog and cloud and redirect it to a honeypot, where the assault may be halted and analyzed. To do this, it employs a model based on a two-stage hidden Markov, a fog manager based on an intrusion detection system, and an optical virtual honeypot. An internal assault is mitigated by simulated testing of the suggested system. The findings validate the adaptable and affordable access for cloud computing and optical fog.
2023-04-14
Safitri, Winda Ayu, Ahmad, Tohari, Hostiadi, Dandy Pramana.  2022.  Analyzing Machine Learning-based Feature Selection for Botnet Detection. 2022 1st International Conference on Information System & Information Technology (ICISIT). :386–391.
In this cyber era, the number of cybercrime problems grows significantly, impacting network communication security. Some factors have been identified, such as malware. It is a malicious code attack that is harmful. On the other hand, a botnet can exploit malware to threaten whole computer networks. Therefore, it needs to be handled appropriately. Several botnet activity detection models have been developed using a classification approach in previous studies. However, it has not been analyzed about selecting features to be used in the learning process of the classification algorithm. In fact, the number and selection of features implemented can affect the detection accuracy of the classification algorithm. This paper proposes an analysis technique for determining the number and selection of features developed based on previous research. It aims to obtain the analysis of using features. The experiment has been conducted using several classification algorithms, namely Decision tree, k-NN, Naïve Bayes, Random Forest, and Support Vector Machine (SVM). The results show that taking a certain number of features increases the detection accuracy. Compared with previous studies, the results obtained show that the average detection accuracy of 98.34% using four features has the highest value from the previous study, 97.46% using 11 features. These results indicate that the selection of the correct number and features affects the performance of the botnet detection model.
2023-03-31
Vikram, Aditya, Kumar, Sumit, Mohana.  2022.  Blockchain Technology and its Impact on Future of Internet of Things (IoT) and Cyber Security. 2022 6th International Conference on Electronics, Communication and Aerospace Technology. :444–447.
Due to Bitcoin's innovative block structure, it is both immutable and decentralized, making it a valuable tool or instrument for changing current financial systems. However, the appealing features of Bitcoin have also drawn the attention of cybercriminals. The Bitcoin scripting system allows users to include up to 80 bytes of arbitrary data in Bitcoin transactions, making it possible to store illegal information in the blockchain. This makes Bitcoin a powerful tool for obfuscating information and using it as the command-and-control infrastructure for blockchain-based botnets. On the other hand, Blockchain offers an intriguing solution for IoT security. Blockchain provides strong protection against data tampering, locks Internet of Things devices, and enables the shutdown of compromised devices within an IoT network. Thus, blockchain could be used both to attack and defend IoT networks and communications.
2023-02-03
Nie, Chenyang, Quinan, Paulo Gustavo, Traore, Issa, Woungang, Isaac.  2022.  Intrusion Detection using a Graphical Fingerprint Model. 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid). :806–813.
The Activity and Event Network (AEN) graph is a new framework that allows modeling and detecting intrusions by capturing ongoing security-relevant activity and events occurring at a given organization using a large time-varying graph model. The graph is generated by processing various network security logs, such as network packets, system logs, and intrusion detection alerts. In this paper, we show how known attack methods can be captured generically using attack fingerprints based on the AEN graph. The fingerprints are constructed by identifying attack idiosyncrasies under the form of subgraphs that represent indicators of compromise (IOes), and then encoded using Property Graph Query Language (PGQL) queries. Among the many attack types, three main categories are implemented as a proof of concept in this paper: scanning, denial of service (DoS), and authentication breaches; each category contains its common variations. The experimental evaluation of the fingerprints was carried using a combination of intrusion detection datasets and yielded very encouraging results.
2023-01-05
Sarwar, Asima, Hasan, Salva, Khan, Waseem Ullah, Ahmed, Salman, Marwat, Safdar Nawaz Khan.  2022.  Design of an Advance Intrusion Detection System for IoT Networks. 2022 2nd International Conference on Artificial Intelligence (ICAI). :46–51.
The Internet of Things (IoT) is advancing technology by creating smart surroundings that make it easier for humans to do their work. This technological advancement not only improves human life and expands economic opportunities, but also allows intruders or attackers to discover and exploit numerous methods in order to circumvent the security of IoT networks. Hence, security and privacy are the key concerns to the IoT networks. It is vital to protect computer and IoT networks from many sorts of anomalies and attacks. Traditional intrusion detection systems (IDS) collect and employ large amounts of data with irrelevant and inappropriate attributes to train machine learning models, resulting in long detection times and a high rate of misclassification. This research presents an advance approach for the design of IDS for IoT networks based on the Particle Swarm Optimization Algorithm (PSO) for feature selection and the Extreme Gradient Boosting (XGB) model for PSO fitness function. The classifier utilized in the intrusion detection process is Random Forest (RF). The IoTID20 is being utilized to evaluate the efficacy and robustness of our suggested strategy. The proposed system attains the following level of accuracy on the IoTID20 dataset for different levels of classification: Binary classification 98 %, multiclass classification 83 %. The results indicate that the proposed framework effectively detects cyber threats and improves the security of IoT networks.
Khodaskar, Manish, Medhane, Darshan, Ingle, Rajesh, Buchade, Amar, Khodaskar, Anuja.  2022.  Feature-based Intrusion Detection System with Support Vector Machine. 2022 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS). :1—7.
Today billions of people are accessing the internet around the world. There is a need for new technology to provide security against malicious activities that can take preventive/ defensive actions against constantly evolving attacks. A new generation of technology that keeps an eye on such activities and responds intelligently to them is the intrusion detection system employing machine learning. It is difficult for traditional techniques to analyze network generated data due to nature, amount, and speed with which the data is generated. The evolution of advanced cyber threats makes it difficult for existing IDS to perform up to the mark. In addition, managing large volumes of data is beyond the capabilities of computer hardware and software. This data is not only vast in scope, but it is also moving quickly. The system architecture suggested in this study uses SVM to train the model and feature selection based on the information gain ratio measure ranking approach to boost the overall system's efficiency and increase the attack detection rate. This work also addresses the issue of false alarms and trying to reduce them. In the proposed framework, the UNSW-NB15 dataset is used. For analysis, the UNSW-NB15 and NSL-KDD datasets are used. Along with SVM, we have also trained various models using Naive Bayes, ANN, RF, etc. We have compared the result of various models. Also, we can extend these trained models to create an ensemble approach to improve the performance of IDS.
2022-12-09
Legashev, Leonid, Grishina, Luybov.  2022.  Development of an Intrusion Detection System Prototype in Mobile Ad Hoc Networks Based on Machine Learning Methods. 2022 International Russian Automation Conference (RusAutoCon). :171—175.
Wireless ad hoc networks are characterized by dynamic topology and high node mobility. Network attacks on wireless ad hoc networks can significantly reduce performance metrics, such as the packet delivery ratio from the source to the destination node, overhead, throughput, etc. The article presents an experimental study of an intrusion detection system prototype in mobile ad hoc networks based on machine learning. The experiment is carried out in a MANET segment of 50 nodes, the detection and prevention of DDoS and cooperative blackhole attacks are investigated. The dependencies of features on the type of network traffic and the dependence of performance metrics on the speed of mobile nodes in the network are investigated. The conducted experimental studies show the effectiveness of an intrusion detection system prototype on simulated data.
2022-10-20
King, James, Bendiab, Gueltoum, Savage, Nick, Shiaeles, Stavros.  2021.  Data Exfiltration: Methods and Detection Countermeasures. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :442—447.
Data exfiltration is of increasing concern throughout the world. The number of incidents and capabilities of data exfiltration attacks are growing at an unprecedented rate. However, such attack vectors have not been deeply explored in the literature. This paper aims to address this gap by implementing a data exfiltration methodology, detailing some data exfiltration methods. Groups of exfiltration methods are incorporated into a program that can act as a testbed for owners of any network that stores sensitive data. The implemented methods are tested against the well-known network intrusion detection system Snort, where all of them have been successfully evaded detection by its community rule sets. Thus, in this paper, we have developed new countermeasures to prevent and detect data exfiltration attempts using these methods.
2022-09-20
Singh, Jagdeep, Behal, Sunny.  2021.  A Novel Approach for the Detection of DDoS Attacks in SDN using Information Theory Metric. 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom). :512—516.
Internet always remains the target for the cyberattacks, and attackers are getting equipped with more potent tools due to the advancement of technology to preach the security of the Internet. Industries and organizations are sponsoring many projects to avoid these kinds of problems. As a result, SDN (Software Defined Network) architecture is becoming an acceptable alternative for the traditional IP based networks which seems a better approach to defend the Internet. However, SDN is also vulnerable to many new threats because of its architectural concept. SDN might be a primary target for DoS (Denial of Service) and DDoS (Distributed Denial of Service) attacks due to centralized control and linking of data plane and control plane. In this paper, the we propose a novel technique for detection of DDoS attacks using information theory metric. We compared our approach with widely used Intrusion Detection Systems (IDSs) based on Shannon entropy and Renyi entropy, and proved that our proposed methodology has more power to detect malicious flows in SDN based networks. We have used precision, detection rate and FPR (False Positive Rate) as performance parameters for comparison, and validated the methodology using a topology implemented in Mininet network emulator.
Li, Zeyi, Wang, Yun, Wang, Pan, Su, Haorui.  2021.  PGAN:A Generative Adversarial Network based Anomaly Detection Method for Network Intrusion Detection System. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :734—741.
With the rapid development of communication net-work, the types and quantities of network traffic data have in-creased substantially. What followed was the frequent occurrence of versatile cyber attacks. As an important part of network security, the network-based intrusion detection system (NIDS) can monitor and protect the network equippments and terminals in real time. The traditional detection methods based on deep learning (DL) are always in supervised manners in NIDS, which can automatically build end-to-end detection model without man-ual feature extraction and selection by domain experts. However, supervised learning methods require large-scale labeled data, yet capturing large labeled datasets is a very cubersome, tedious and time-consuming manual task. Instead, unsupervised learning is an effective way to overcome this problem. Nonetheless, the ex-isting unsupervised methods are prone to low detection efficiency and are difficult to train. In this paper we propose a novel NIDS method called PGAN based on generative adversarial network (GAN) to detect the abnormal traffic from the perspective of Anomaly Detection, which leverage the competitive speciality of adversarial training to learn the normal traffic. Based on the public dataset CICIDS2017, three experimental results show that PGAN can significantly outperform other unsupervised methods like stacked autoencoder (SAE) and isolation forest (IF).
2022-09-16
Almseidin, Mohammad, Al-Sawwa, Jamil, Alkasassbeh, Mouhammd.  2021.  Anomaly-based Intrusion Detection System Using Fuzzy Logic. 2021 International Conference on Information Technology (ICIT). :290—295.
Recently, the Distributed Denial of Service (DDOS) attacks has been used for different aspects to denial the number of services for the end-users. Therefore, there is an urgent need to design an effective detection method against this type of attack. A fuzzy inference system offers the results in a more readable and understandable form. This paper introduces an anomaly-based Intrusion Detection (IDS) system using fuzzy logic. The fuzzy logic inference system implemented as a detection method for Distributed Denial of Service (DDOS) attacks. The suggested method was applied to an open-source DDOS dataset. Experimental results show that the anomaly-based Intrusion Detection system using fuzzy logic obtained the best result by utilizing the InfoGain features selection method besides the fuzzy inference system, the results were 91.1% for the true-positive rate and 0.006% for the false-positive rate.
2022-07-12
Farrukh, Yasir Ali, Ahmad, Zeeshan, Khan, Irfan, Elavarasan, Rajvikram Madurai.  2021.  A Sequential Supervised Machine Learning Approach for Cyber Attack Detection in a Smart Grid System. 2021 North American Power Symposium (NAPS). :1—6.
Modern smart grid systems are heavily dependent on Information and Communication Technology, and this dependency makes them prone to cyber-attacks. The occurrence of a cyber-attack has increased in recent years resulting in substantial damage to power systems. For a reliable and stable operation, cyber protection, control, and detection techniques are becoming essential. Automated detection of cyberattacks with high accuracy is a challenge. To address this, we propose a two-layer hierarchical machine learning model having an accuracy of 95.44 % to improve the detection of cyberattacks. The first layer of the model is used to distinguish between the two modes of operation - normal state or cyberattack. The second layer is used to classify the state into different types of cyberattacks. The layered approach provides an opportunity for the model to focus its training on the targeted task of the layer, resulting in improvement in model accuracy. To validate the effectiveness of the proposed model, we compared its performance against other recent cyber attack detection models proposed in the literature.
2022-06-09
Fadhlillah, Aghnia, Karna, Nyoman, Irawan, Arif.  2021.  IDS Performance Analysis using Anomaly-based Detection Method for DOS Attack. 2020 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS). :18–22.
Intrusion Detection System (IDS) is a system that could detect suspicious activity in a network. Two approaches are known for IDS, namely signature-based and anomaly-based. The anomaly-based detection method was chosen to detect suspicious and abnormal activity for the system that cannot be performed by the signature-based method. In this study, attack testing was carried out using three DoS tools, namely the LOIC, Torshammer, and Xerxes tools, with a test scenario using IDS and without IDS. From the test results that have been carried out, IDS has successfully detected the attacks that were sent, for the delivery of the most consecutive attack packages, namely Torshammer, Xerxes, and LOIC. In the detection of Torshammer attack tools on the target FTP Server, 9421 packages were obtained, for Xerxes tools as many as 10618 packages and LOIC tools as many as 6115 packages. Meanwhile, attacks on the target Web Server for Torshammer tools were 299 packages, for Xerxes tools as many as 530 packages, and for LOIC tools as many as 103 packages. The accuracy of the IDS performance results is 88.66%, the precision is 88.58% and the false positive rate is 63.17%.
Alsyaibani, Omar Muhammad Altoumi, Utami, Ema, Hartanto, Anggit Dwi.  2021.  An Intrusion Detection System Model Based on Bidirectional LSTM. 2021 3rd International Conference on Cybernetics and Intelligent System (ICORIS). :1–6.
Intrusion Detection System (IDS) is used to identify malicious traffic on the network. Apart from rule-based IDS, machine learning and deep learning based on IDS are also being developed to improve the accuracy of IDS detection. In this study, the public dataset CIC IDS 2017 was used in developing deep learning-based IDS because this dataset contains the new types of attacks. In addition, this dataset also meets the criteria as an intrusion detection dataset. The dataset was split into train data, validation data and test data. We proposed Bidirectional Long-Short Term Memory (LSTM) for building neural network. We created 24 scenarios with various changes in training parameters which were trained for 100 epochs. The training parameters used as research variables are optimizer, activation function, and learning rate. As addition, Dropout layer and L2-regularizer were implemented on every scenario. The result shows that the model used Adam optimizer, Tanh activation function and a learning rate of 0.0001 produced the highest accuracy compared to other scenarios. The accuracy and F1 score reached 97.7264% and 97.7516%. The best model was trained again until 1000 iterations and the performance increased to 98.3448% in accuracy and 98.3793% in F1 score. The result exceeded several previous works on the same dataset.
Jin, Shiyi, Chung, Jin-Gyun, Xu, Yinan.  2021.  Signature-Based Intrusion Detection System (IDS) for In-Vehicle CAN Bus Network. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.

In-vehicle CAN (Controller Area Network) bus network does not have any network security protection measures, which is facing a serious network security threat. However, most of the intrusion detection solutions requiring extensive computational resources cannot be implemented in in- vehicle network system because of the resource constrained ECUs. To add additional hardware or to utilize cloud computing, we need to solve the cost problem and the reliable communication requirement between vehicles and cloud platform, which is difficult to be applied in a short time. Therefore, we need to propose a short-term solution for automobile manufacturers. In this paper, we propose a signature-based light-weight intrusion detection system, which can be applied directly and promptly to vehicle's ECUs (Electronic Control Units). We detect the anomalies caused by several attack modes on CAN bus from real-world scenarios, which provide the basis for selecting signatures. Experimental results show that our method can effectively detect CAN traffic related anomalies. For the content related anomalies, the detection ratio can be improved by exploiting the relationship between the signals.

2022-05-12
Rokade, Monika D., Sharma, Yogesh Kumar.  2021.  MLIDS: A Machine Learning Approach for Intrusion Detection for Real Time Network Dataset. 2021 International Conference on Emerging Smart Computing and Informatics (ESCI). :533–536.
Computer network and virtual machine security is very essential in today's era. Various architectures have been proposed for network security or prevent malicious access of internal or external users. Various existing systems have already developed to detect malicious activity on victim machines; sometimes any external user creates some malicious behavior and gets unauthorized access of victim machines to such a behavior system considered as malicious activities or Intruder. Numerous machine learning and soft computing techniques design to detect the activities in real-time network log audit data. KKDDCUP99 and NLSKDD most utilized data set to detect the Intruder on benchmark data set. In this paper, we proposed the identification of intruders using machine learning algorithms. Two different techniques have been proposed like a signature with detection and anomaly-based detection. In the experimental analysis, demonstrates SVM, Naïve Bayes and ANN algorithm with various data sets and demonstrate system performance on the real-time network environment.
2022-05-10
Bezzateev, S. V., Fomicheva, S. G., Zhemelev, G. A..  2021.  Agent-based ZeroLogon Vulnerability Detection. 2021 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). :1–5.
Intrusion detection systems installed on the information security devices that control the internal and external perimeter of the demilitarized zones are not able to detect the vulnerability of ZeroLogon after the successful penetration of the intruder into the zone. Component solution for ZeroLogon control is offered. The paper presents the research results of the capabilities for built-in Active Directory audit mechanisms and open source intrusion detection/prevention systems, which allow identification of the critical vulnerability CVE-2020-1472. These features can be used to improve the quality of cyber-physical systems management, to perform audits, as well as to check corporate domains for ZeroLogon vulnerabilities.
2022-04-25
Mubarak, Sinil, Habaebi, Mohamed Hadi, Islam, Md Rafiqul, Khan, Sheroz.  2021.  ICS Cyber Attack Detection with Ensemble Machine Learning and DPI using Cyber-kit Datasets. 2021 8th International Conference on Computer and Communication Engineering (ICCCE). :349–354.

Digitization has pioneered to drive exceptional changes across all industries in the advancement of analytics, automation, and Artificial Intelligence (AI) and Machine Learning (ML). However, new business requirements associated with the efficiency benefits of digitalization are forcing increased connectivity between IT and OT networks, thereby increasing the attack surface and hence the cyber risk. Cyber threats are on the rise and securing industrial networks are challenging with the shortage of human resource in OT field, with more inclination to IT/OT convergence and the attackers deploy various hi-tech methods to intrude the control systems nowadays. We have developed an innovative real-time ICS cyber test kit to obtain the OT industrial network traffic data with various industrial attack vectors. In this paper, we have introduced the industrial datasets generated from ICS test kit, which incorporate the cyber-physical system of industrial operations. These datasets with a normal baseline along with different industrial hacking scenarios are analyzed for research purposes. Metadata is obtained from Deep packet inspection (DPI) of flow properties of network packets. DPI analysis provides more visibility into the contents of OT traffic based on communication protocols. The advancement in technology has led to the utilization of machine learning/artificial intelligence capability in IDS ICS SCADA. The industrial datasets are pre-processed, profiled and the abnormality is analyzed with DPI. The processed metadata is normalized for the easiness of algorithm analysis and modelled with machine learning-based latest deep learning ensemble LSTM algorithms for anomaly detection. The deep learning approach has been used nowadays for enhanced OT IDS performances.

2022-04-19
Chen, Hsing-Chung, Nshimiyimana, Aristophane, Damarjati, Cahya, Chang, Pi-Hsien.  2021.  Detection and Prevention of Cross-site Scripting Attack with Combined Approaches. 2021 International Conference on Electronics, Information, and Communication (ICEIC). :1–4.
Cross-site scripting (XSS) attack is a kind of code injection that allows an attacker to inject malicious scripts code into a trusted web application. When a user tries to request the injected web page, he is not aware that the malicious script code might be affecting his computer. Nowadays, attackers are targeting the web applications that holding a sensitive data (e.g., bank transaction, e-mails, healthcare, and e-banking) to steal users' information and gain full access to the data which make the web applications to be more vulnerable. In this research, we applied three approaches to find a solution to this most challenging attacks issues. In the first approach, we implemented Random Forest (RF), Logistic Regression (LR), k-Nearest Neighbors (k-NN), and Support Vector Machine (SVM) algorithms to discover and classify XSS attack. In the second approach, we implemented the Content Security Policy (CSP) approach to detect XSS attacks in real-time. In the last approach, we propose a new approach that combines the Web Application Firewall (WAF), Intrusion Detection System (IDS), and Intrusion Prevention System (IPS) to detect and prevent XSS attack in real-time. Our experiment results demonstrated the high performance of AI algorithms. The CSP approach shows the results for the detection system report in real-time. In the third approach, we got more expected system results that make our third model system a more powerful tool to address this research problem than the other two approaches.
2022-04-18
Kang, Ji, Sun, Yi, Xie, Hui, Zhu, Xixi, Ding, Zhaoyun.  2021.  Analysis System for Security Situation in Cyberspace Based on Knowledge Graph. 2021 7th International Conference on Big Data and Information Analytics (BigDIA). :385–392.
With the booming of Internet technology, the continuous emergence of new technologies and new algorithms greatly expands the application boundaries of cyberspace. While enjoying the convenience brought by informatization, the society is also facing increasingly severe threats to the security of cyberspace. In cyber security defense, cyberspace operators rely on the discovered vulnerabilities, attack patterns, TTPs, and other knowledge to observe, analyze and determine the current threats to the network and security situation in cyberspace, and then make corresponding decisions. However, most of such open-source knowledge is distributed in different data sources in the form of text or web pages, which is not conducive to the understanding, query and correlation analysis of cyberspace operators. In this paper, a knowledge graph for cyber security is constructed to solve this problem. At first, in the process of obtaining security data from multi-source heterogeneous cyberspaces, we adopt efficient crawler to crawl the required data, paving the way for knowledge graph building. In order to establish the ontology required by the knowledge graph, we abstract the overall framework of security data sources in cyberspace, and depict in detail the correlations among various data sources. Then, based on the \$$\backslash$mathbfOWL +$\backslash$mathbfSWRL\$ language, we construct the cyber security knowledge graph. On this basis, we design an analysis system for situation in cyberspace based on knowledge graph and the Snort intrusion detection system (IDS), and study the rules in Snort. The system integrates and links various public resources from the Internet, including key information such as general platforms, vulnerabilities, weaknesses, attack patterns, tactics, techniques, etc. in real cyberspace, enabling the provision of comprehensive, systematic and rich cyber security knowledge to security researchers and professionals, with the expectation to provide a useful reference for cyber security defense.
2022-04-13
Rose, Joseph R, Swann, Matthew, Bendiab, Gueltoum, Shiaeles, Stavros, Kolokotronis, Nicholas.  2021.  Intrusion Detection using Network Traffic Profiling and Machine Learning for IoT. 2021 IEEE 7th International Conference on Network Softwarization (NetSoft). :409–415.
The rapid increase in the use of IoT devices brings many benefits to the digital society, ranging from improved efficiency to higher productivity. However, the limited resources and the open nature of these devices make them vulnerable to various cyber threats. A single compromised device can have an impact on the whole network and lead to major security and physical damages. This paper explores the potential of using network profiling and machine learning to secure IoT against cyber attacks. The proposed anomaly-based intrusion detection solution dynamically and actively profiles and monitors all networked devices for the detection of IoT device tampering attempts as well as suspicious network transactions. Any deviation from the defined profile is considered to be an attack and is subject to further analysis. Raw traffic is also passed on to the machine learning classifier for examination and identification of potential attacks. Performance assessment of the proposed methodology is conducted on the Cyber-Trust testbed using normal and malicious network traffic. The experimental results show that the proposed anomaly detection system delivers promising results with an overall accuracy of 98.35% and 0.98% of false-positive alarms.
2022-03-23
Slevi, S. Tamil, Visalakshi, P..  2021.  A survey on Deep Learning based Intrusion Detection Systems on Internet of Things. 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :1488–1496.
The integration of IDS and Internet of Things (IoT) with deep learning plays a significant role in safety. Security has a strong role to play. Application of the IoT network decreases the time complexity and resources. In the traditional intrusion detection systems (IDS), this research work implements the cutting-edge methodologies in the IoT environment. This research is based on analysis, conception, testing and execution. Detection of intrusions can be performed by using the advanced deep learning system and multiagent. The NSL-KDD dataset is used to test the IoT system. The IoT system is used to test the IoT system. In order to detect attacks from intruders of transport layer, efficiency result rely on advanced deep learning idea. In order to increase the system performance, multi -agent algorithms could be employed to train communications agencies and to optimize the feedback training process. Advanced deep learning techniques such as CNN will be researched to boost system performance. The testing part an IoT includes data simulator which will be used to generate in continuous of research work finding with deep learning algorithms of suitable IDS in IoT network environment of current scenario without time complexity.