Visible to the public Biblio

Found 158 results

Filters: Keyword is intrusion detection system  [Clear All Filters]
2018-02-28
Alzubaidi, Mahmood, Anbar, Mohammed, Hanshi, Sabri M..  2017.  Neighbor-Passive Monitoring Technique for Detecting Sinkhole Attacks in RPL Networks. Proceedings of the 2017 International Conference on Computer Science and Artificial Intelligence. :173–182.
Internet Protocol version 6 (IPv6) over Low-power Wireless Personal Area Networks (6LoWPAN) is extensively used in wireless sensor networks due to its capability to transmit IPv6 packets with low bandwidth and limited resources. 6LoWPAN has several operations in each layer. Most existing security challenges are focused on the network layer, which is represented by the Routing Protocol for Low-power and Lossy Networks (RPL). 6LoWPAN, with its routing protocol (RPL), usually uses nodes that have constrained resources (memory, power, and processor). In addition, RPL messages are exchanged among network nodes without any message authentication mechanism, thereby exposing the RPL to various attacks that may lead to network disruptions. A sinkhole attack utilizes the vulnerabilities in an RPL and attracts considerable traffic by advertising falsified data that change the routing preference for other nodes. This paper proposes the neighbor-passive monitoring technique (NPMT) for detecting sinkhole attacks in RPL-based networks. The proposed technique is evaluated using the COOJA simulator in terms of power consumption and detection accuracy. Moreover, NPMT is compared with popular detection mechanisms.
2018-02-27
Potluri, S., Henry, N. F., Diedrich, C..  2017.  Evaluation of Hybrid Deep Learning Techniques for Ensuring Security in Networked Control Systems. 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :1–8.

With the rapid application of the network based communication in industries, the security related problems appear to be inevitable for automation networks. The integration of internet into the automation plant benefited companies and engineers a lot and on the other side paved ways to number of threats. An attack on such control critical infrastructure may endangers people's health and safety, damage industrial facilities and produce financial loss. One of the approach to secure the network in automation is the development of an efficient Network based Intrusion Detection System (NIDS). Despite several techniques available for intrusion detection, they still lag in identifying the possible attacks or novel attacks on network efficiently. In this paper, we evaluate the performance of detection mechanism by combining the deep learning techniques with the machine learning techniques for the development of Intrusion Detection System (IDS). The performance metrics such as precession, recall and F-Measure were measured.

2018-02-06
Masduki, B. W., Ramli, K., Salman, M..  2017.  Leverage Intrusion Detection System Framework for Cyber Situational Awareness System. 2017 International Conference on Smart Cities, Automation Intelligent Computing Systems (ICON-SONICS). :64–69.

As one of the security components in cyber situational awareness systems, Intrusion Detection System (IDS) is implemented by many organizations in their networks to address the impact of network attacks. Regardless of the tools and technologies used to generate security alarms, IDS can provide a situation overview of network traffic. With the security alarm data generated, most organizations do not have the right techniques and further analysis to make this alarm data more valuable for the security team to handle attacks and reduce risk to the organization. This paper proposes the IDS Metrics Framework for cyber situational awareness system that includes the latest technologies and techniques that can be used to create valuable metrics for security advisors in making the right decisions. This metrics framework consists of the various tools and techniques used to evaluate the data. The evaluation of the data is then used as a measurement against one or more reference points to produce an outcome that can be very useful for the decision making process of cyber situational awareness system. This metric offers an additional Graphical User Interface (GUI) tools that produces graphical displays and provides a great platform for analysis and decision-making by security teams.

Vimalkumar, K., Radhika, N..  2017.  A Big Data Framework for Intrusion Detection in Smart Grids Using Apache Spark. 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :198–204.

Technological advancement enables the need of internet everywhere. The power industry is not an exception in the technological advancement which makes everything smarter. Smart grid is the advanced version of the traditional grid, which makes the system more efficient and self-healing. Synchrophasor is a device used in smart grids to measure the values of electric waves, voltages and current. The phasor measurement unit produces immense volume of current and voltage data that is used to monitor and control the performance of the grid. These data are huge in size and vulnerable to attacks. Intrusion Detection is a common technique for finding the intrusions in the system. In this paper, a big data framework is designed using various machine learning techniques, and intrusions are detected based on the classifications applied on the synchrophasor dataset. In this approach various machine learning techniques like deep neural networks, support vector machines, random forest, decision trees and naive bayes classifications are done for the synchrophasor dataset and the results are compared using metrics of accuracy, recall, false rate, specificity, and prediction time. Feature selection and dimensionality reduction algorithms are used to reduce the prediction time taken by the proposed approach. This paper uses apache spark as a platform which is suitable for the implementation of Intrusion Detection system in smart grids using big data analytics.

2018-01-16
Bhaya, W., EbadyManaa, M..  2017.  DDoS attack detection approach using an efficient cluster analysis in large data scale. 2017 Annual Conference on New Trends in Information Communications Technology Applications (NTICT). :168–173.

Distributed Denial of Service (DDoS) attack is a congestion-based attack that makes both the network and host-based resources unavailable for legitimate users, sending flooding attack packets to the victim's resources. The non-existence of predefined rules to correctly identify the genuine network flow made the task of DDoS attack detection very difficult. In this paper, a combination of unsupervised data mining techniques as intrusion detection system are introduced. The entropy concept in term of windowing the incoming packets is applied with data mining technique using Clustering Using Representative (CURE) as cluster analysis to detect the DDoS attack in network flow. The data is mainly collected from DARPA2000, CAIDA2007 and CAIDA2008 datasets. The proposed approach has been evaluated and compared with several existing approaches in terms of accuracy, false alarm rate, detection rate, F. measure and Phi coefficient. Results indicates the superiority of the proposed approach with four out five detected phases, more than 99% accuracy rate 96.29% detection rate, around 0% false alarm rate 97.98% F-measure, and 97.98% Phi coefficient.

2018-01-10
Bronte, Robert, Shahriar, Hossain, Haddad, Hisham M..  2016.  A Signature-Based Intrusion Detection System for Web Applications Based on Genetic Algorithm. Proceedings of the 9th International Conference on Security of Information and Networks. :32–39.
Web application attacks are an extreme threat to the world's information technology infrastructure. A web application is generally defined as a client-server software application where the client uses a user interface within a web browser. Most users are familiar with web application attacks. For instance, a user may have received a link in an email that led the user to a malicious website. The most widely accepted solution to this threat is to deploy an Intrusion Detection System (IDS). Such a system currently relies on signatures of the predefined set of events matching with attacks. Issues still arise as all possible attack signatures may not be defined before deploying an IDS. Attack events may not fit with the pre-defined signatures. Thus, there is a need to detect new types of attacks with a mutated signature based detection approach. Most traditional literature works describe signature based IDSs for application layer attacks, but several works mention that not all attacks can be detected. It is well known that many security threats can be related to software or application development and design or implementation flaws. Given that fact, this work expands a new method for signature based web application layer attack detection. We apply a genetic algorithm to analyze web server and database logs and the log entries. The work contributes to the development of a mutated signature detection framework. The initial results show that the suggested approach can detect specific application layer attacks such as Cross-Site Scripting, SQL Injection and Remote File Inclusion attacks.
2017-12-12
Pacheco, J., Zhu, X., Badr, Y., Hariri, S..  2017.  Enabling Risk Management for Smart Infrastructures with an Anomaly Behavior Analysis Intrusion Detection System. 2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS*W). :324–328.

The Internet of Things (IoT) connects not only computers and mobile devices, but it also interconnects smart buildings, homes, and cities, as well as electrical grids, gas, and water networks, automobiles, airplanes, etc. However, IoT applications introduce grand security challenges due to the increase in the attack surface. Current security approaches do not handle cybersecurity from a holistic point of view; hence a systematic cybersecurity mechanism needs to be adopted when designing IoTbased applications. In this work, we present a risk management framework to deploy secure IoT-based applications for Smart Infrastructures at the design time and the runtime. At the design time, we propose a risk management method that is appropriate for smart infrastructures. At the design time, our framework relies on the Anomaly Behavior Analysis (ABA) methodology enabled by the Autonomic Computing paradigm and an intrusion detection system to detect any threat that can compromise IoT infrastructures by. Our preliminary experimental results show that our framework can be used to detect threats and protect IoT premises and services.

2017-11-20
Deng, C., Qiao, H..  2016.  Network security intrusion detection system based on incremental improved convolutional neural network model. 2016 International Conference on Communication and Electronics Systems (ICCES). :1–5.

With the popularization and development of network knowledge, network intruders are increasing, and the attack mode has been updated. Intrusion detection technology is a kind of active defense technology, which can extract the key information from the network system, and quickly judge and protect the internal or external network intrusion. Intrusion detection is a kind of active security technology, which provides real-time protection for internal attacks, external attacks and misuse, and it plays an important role in ensuring network security. However, with the diversification of intrusion technology, the traditional intrusion detection system cannot meet the requirements of the current network security. Therefore, the implementation of intrusion detection needs diversifying. In this context, we apply neural network technology to the network intrusion detection system to solve the problem. In this paper, on the basis of intrusion detection method, we analyze the development history and the present situation of intrusion detection technology, and summarize the intrusion detection system overview and architecture. The neural network intrusion detection is divided into data acquisition, data analysis, pretreatment, intrusion behavior detection and testing.

2017-09-15
De Gaspari, Fabio, Jajodia, Sushil, Mancini, Luigi V., Panico, Agostino.  2016.  AHEAD: A New Architecture for Active Defense. Proceedings of the 2016 ACM Workshop on Automated Decision Making for Active Cyber Defense. :11–16.

Active defense is a popular defense technique based on systems that hinder an attacker's progress by design, rather than reactively responding to an attack only after its detection. Well-known active defense systems are honeypots. Honeypots are fake systems, designed to look like real production systems, aimed at trapping an attacker, and analyzing his attack strategy and goals. These types of systems suffer from a major weakness: it is extremely hard to design them in such a way that an attacker cannot distinguish them from a real production system. In this paper, we advocate that, instead of adding additional fake systems in the corporate network, the production systems themselves should be instrumented to provide active defense capabilities. This perspective to active defense allows containing costs and complexity, while at the same time provides the attacker with a more realistic-looking target, and gives the Incident Response Team more time to identify the attacker. The proposed proof-of-concept prototype system can be used to implement active defense in any corporate production network, with little upfront work, and little maintenance.

2017-05-22
Pawar, Shwetambari, Jain, Nilakshi, Deshpande, Swati.  2016.  System Attribute Measures of Network Security Analyzer. Proceedings of the ACM Symposium on Women in Research 2016. :51–54.

In this paper, we have mentioned a method to find the performance of projectwhich detects various web - attacks. The project is capable to identifying and preventing attacks like SQL Injection, Cross – Site Scripting, URL rewriting, Web server 400 error code etc. The performance of system is detected using the system attributes that are mentioned in this paper. This is also used to determine efficiency of the system.

2017-05-16
Laszka, Aron, Abbas, Waseem, Sastry, S. Shankar, Vorobeychik, Yevgeniy, Koutsoukos, Xenofon.  2016.  Optimal Thresholds for Intrusion Detection Systems. Proceedings of the Symposium and Bootcamp on the Science of Security. :72–81.

In recent years, we have seen a number of successful attacks against high-profile targets, some of which have even caused severe physical damage. These examples have shown us that resourceful and determined attackers can penetrate virtually any system, even those that are secured by the "air-gap." Consequently, in order to minimize the impact of stealthy attacks, defenders have to focus not only on strengthening the first lines of defense but also on deploying effective intrusion-detection systems. Intrusion-detection systems can play a key role in protecting sensitive computer systems since they give defenders a chance to detect and mitigate attacks before they could cause substantial losses. However, an over-sensitive intrusion-detection system, which produces a large number of false alarms, imposes prohibitively high operational costs on a defender since alarms need to be manually investigated. Thus, defenders have to strike the right balance between maximizing security and minimizing costs. Optimizing the sensitivity of intrusion detection systems is especially challenging in the case when multiple inter-dependent computer systems have to be defended against a strategic attacker, who can target computer systems in order to maximize losses and minimize the probability of detection. We model this scenario as an attacker-defender security game and study the problem of finding optimal intrusion detection thresholds.

2017-04-24
Patel, Himanshu B., Jinwala, Devesh C., Patel, Dhiren R..  2016.  Baseline Intrusion Detection Framework for 6LoWPAN Devices. Adjunct Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing Networking and Services. :72–76.

Internet Engineering Task Force (IETF) is working on 6LoW-PAN standard which allows smart devices to be connected to Internet using large address space of IPV6. 6LoWPAN acts as a bridge between resource constrained devices and the Internet. The entire IoT space is vulnerable to local threats as well as the threats from the Internet. Due to the random deployment of the network nodes and the absence of tamper resistant shield, the resource constrained IoT elements face potential insider attacks even in presence of front line defense mechanism that involved cryptographic protocols. To detect such insidious nodes, an Intrusion Detection System (IDS) is required as a second line of defense. In this paper, we attempt to analyze such potential insider attacks, while reviewing the IDS based countermeasures. We attempt to propose a baseline for designing IDS for 6LoWPAN based IoT system.

2017-04-20
Chen, Aokun, Brahma, Pratik, Wu, Dapeng Oliver, Ebner, Natalie, Matthews, Brandon, Crandall, Jedidiah, Wei, Xuetao, Faloutsos, Michalis, Oliveira, Daniela.  2016.  Cross-layer Personalization As a First-class Citizen for Situation Awareness and Computer Infrastructure Security. Proceedings of the 2016 New Security Paradigms Workshop. :23–35.

We propose a new security paradigm that makes cross-layer personalization a premier component in the design of security solutions for computer infrastructure and situational awareness. This paradigm is based on the observation that computer systems have a personalized usage profile that depends on the user and his activities. Further, it spans the various layers of abstraction that make up a computer system, as if the user embedded his own DNA into the computer system. To realize such a paradigm, we discuss the design of a comprehensive and cross-layer profiling approach, which can be adopted to boost the effectiveness of various security solutions, e.g., malware detection, insider attacker prevention and continuous authentication. The current state-of-the-art in computer infrastructure defense solutions focuses on one layer of operation with deployments coming in a "one size fits all" format, without taking into account the unique way people use their computers. The key novelty of our proposal is the cross-layer personalization, where we derive the distinguishable behaviors from the intelligence of three layers of abstraction. First, we combine intelligence from: a) the user layer, (e.g., mouse click patterns); b) the operating system layer; c) the network layer. Second, we develop cross-layer personalized profiles for system usage. We will limit our scope to companies and organizations, where computers are used in a more routine and one-on-one style, before we expand our research to personally owned computers. Our preliminary results show that just the time accesses in user web logs are already sufficient to distinguish users from each other,with users of the same demographics showing similarities in their profiles. Our goal is to challenge today's paradigm for anomaly detection that seems to follow a monoculture and treat each layer in isolation. We also discuss deployment, performance overhead, and privacy issues raised by our paradigm.

2017-04-03
Yüksel, Ömer, den Hartog, Jerry, Etalle, Sandro.  2016.  Reading Between the Fields: Practical, Effective Intrusion Detection for Industrial Control Systems. Proceedings of the 31st Annual ACM Symposium on Applied Computing. :2063–2070.

Detection of previously unknown attacks and malicious messages is a challenging problem faced by modern network intrusion detection systems. Anomaly-based solutions, despite being able to detect unknown attacks, have not been used often in practice due to their high false positive rate, and because they provide little actionable information to the security officer in case of an alert. In this paper we focus on intrusion detection in industrial control systems networks and we propose an innovative, practical and semantics-aware framework for anomaly detection. The network communication model and alerts generated by our framework are userunderstandable, making them much easier to manage. At the same time the framework exhibits an excellent tradeoff between detection rate and false positive rate, which we show by comparing it with two existing payload-based anomaly detection methods on several ICS datasets.

Urbina, David I., Giraldo, Jairo A., Cardenas, Alvaro A., Tippenhauer, Nils Ole, Valente, Junia, Faisal, Mustafa, Ruths, Justin, Candell, Richard, Sandberg, Henrik.  2016.  Limiting the Impact of Stealthy Attacks on Industrial Control Systems. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1092–1105.

While attacks on information systems have for most practical purposes binary outcomes (information was manipulated/eavesdropped, or not), attacks manipulating the sensor or control signals of Industrial Control Systems (ICS) can be tuned by the attacker to cause a continuous spectrum in damages. Attackers that want to remain undetected can attempt to hide their manipulation of the system by following closely the expected behavior of the system, while injecting just enough false information at each time step to achieve their goals. In this work, we study if attack-detection can limit the impact of such stealthy attacks. We start with a comprehensive review of related work on attack detection schemes in the security and control systems community. We then show that many of those works use detection schemes that are not limiting the impact of stealthy attacks. We propose a new metric to measure the impact of stealthy attacks and how they relate to our selection on an upper bound on false alarms. We finally show that the impact of such attacks can be mitigated in several cases by the proper combination and configuration of detection schemes. We demonstrate the effectiveness of our algorithms through simulations and experiments using real ICS testbeds and real ICS systems.

2017-03-29
Kosek, A. M..  2016.  Contextual anomaly detection for cyber-physical security in Smart Grids based on an artificial neural network model. 2016 Joint Workshop on Cyber- Physical Security and Resilience in Smart Grids (CPSR-SG). :1–6.

This paper presents a contextual anomaly detection method and its use in the discovery of malicious voltage control actions in the low voltage distribution grid. The model-based anomaly detection uses an artificial neural network model to identify a distributed energy resource's behaviour under control. An intrusion detection system observes distributed energy resource's behaviour, control actions and the power system impact, and is tested together with an ongoing voltage control attack in a co-simulation set-up. The simulation results obtained with a real photovoltaic rooftop power plant data show that the contextual anomaly detection performs on average 55% better in the control detection and over 56% better in the malicious control detection over the point anomaly detection.

2017-03-07
Olabelurin, A., Veluru, S., Healing, A., Rajarajan, M..  2015.  Entropy clustering approach for improving forecasting in DDoS attacks. 2015 IEEE 12th International Conference on Networking, Sensing and Control. :315–320.

Volume anomaly such as distributed denial-of-service (DDoS) has been around for ages but with advancement in technologies, they have become stronger, shorter and weapon of choice for attackers. Digital forensic analysis of intrusions using alerts generated by existing intrusion detection system (IDS) faces major challenges, especially for IDS deployed in large networks. In this paper, the concept of automatically sifting through a huge volume of alerts to distinguish the different stages of a DDoS attack is developed. The proposed novel framework is purpose-built to analyze multiple logs from the network for proactive forecast and timely detection of DDoS attacks, through a combined approach of Shannon-entropy concept and clustering algorithm of relevant feature variables. Experimental studies on a cyber-range simulation dataset from the project industrial partners show that the technique is able to distinguish precursor alerts for DDoS attacks, as well as the attack itself with a very low false positive rate (FPR) of 22.5%. Application of this technique greatly assists security experts in network analysis to combat DDoS attacks.

2017-02-14
M. Q. Ali, A. B. Ashfaq, E. Al-Shaer, Q. Duan.  2015.  "Towards a science of anomaly detection system evasion". 2015 IEEE Conference on Communications and Network Security (CNS). :460-468.

A fundamental drawback of current anomaly detection systems (ADSs) is the ability of a skilled attacker to evade detection. This is due to the flawed assumption that an attacker does not have any information about an ADS. Advanced persistent threats that are capable of monitoring network behavior can always estimate some information about ADSs which makes these ADSs susceptible to evasion attacks. Hence in this paper, we first assume the role of an attacker to launch evasion attacks on anomaly detection systems. We show that the ADSs can be completely paralyzed by parameter estimation attacks. We then present a mathematical model to measure evasion margin with the aim to understand the science of evasion due to ADS design. Finally, to minimize the evasion margin, we propose a key-based randomization scheme for existing ADSs and discuss its robustness against evasion attacks. Case studies are presented to illustrate the design methodology and extensive experimentation is performed to corroborate the results.

A. K. M. A., J. C. D..  2015.  "Execution Time Measurement of Virtual Machine Volatile Artifacts Analyzers". 2015 IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS). :314-319.

Due to a rapid revaluation in a virtualization environment, Virtual Machines (VMs) are target point for an attacker to gain privileged access of the virtual infrastructure. The Advanced Persistent Threats (APTs) such as malware, rootkit, spyware, etc. are more potent to bypass the existing defense mechanisms designed for VM. To address this issue, Virtual Machine Introspection (VMI) emerged as a promising approach that monitors run state of the VM externally from hypervisor. However, limitation of VMI lies with semantic gap. An open source tool called LibVMI address the semantic gap. Memory Forensic Analysis (MFA) tool such as Volatility can also be used to address the semantic gap. But, it needs to capture a memory dump (RAM) as input. Memory dump acquires time and its analysis time is highly crucial if Intrusion Detection System IDS (IDS) depends on the data supplied by FAM or VMI tool. In this work, live virtual machine RAM dump acquire time of LibVMI is measured. In addition, captured memory dump analysis time consumed by Volatility is measured and compared with other memory analyzer such as Rekall. It is observed through experimental results that, Rekall takes more execution time as compared to Volatility for most of the plugins. Further, Volatility and Rekall are compared with LibVMI. It is noticed that examining the volatile data through LibVMI is faster as it eliminates memory dump acquire time.

N. Nakagawa, Y. Teshigawara, R. Sasaki.  2015.  "Development of a Detection and Responding System for Malware Communications by Using OpenFlow and Its Evaluation". 2015 Fourth International Conference on Cyber Security, Cyber Warfare, and Digital Forensic (CyberSec). :46-51.

Advanced Persistent Threat (APT) attacks, which have become prevalent in recent years, are classified into four phases. These are initial compromise phase, attacking infrastructure building phase, penetration and exploration phase, and mission execution phase. The malware on infected terminals attempts various communications on and after the attacking infrastructure building phase. In this research, using OpenFlow technology for virtual networks, we developed a system of identifying infected terminals by detecting communication events of malware communications in APT attacks. In addition, we prevent information fraud by using OpenFlow, which works as real-time path control. To evaluate our system, we executed malware infection experiments with a simulation tool for APT attacks and malware samples. In these experiments, an existing network using only entry control measures was prepared. As a result, we confirm the developed system is effective.

2017-02-09
Mohammad Hossein Manshaei, Isfahan University of Technology, Quanyan Zhu, University of Illinois at Urbana-Champaign, Tansu Alpcan, University of Melbourne, Tamer Başar, University of Illinois at Urbana-Champaign, Jean-Pierre Hubaux, Ecole Polytechnique Federal de Lausanne.  2013.  Game Theory Meets Network Security and Privacy. ACM Computing Surveys. 45(3):06/2013.

This survey provides a structured and comprehensive overview of research on security and privacy in computer and communication networks that use game-theoretic approaches. We present a selected set of works to highlight the application of game theory in addressing different forms of security and privacy problems in computer networks and mobile applications. We organize the presented works in six main categories: security of the physical and MAC layers, security of self-organizing networks, intrusion detection systems, anonymity and privacy, economics of network security, and cryptography. In each category, we identify security problems, players, and game models. We summarize the main results of selected works, such as equilibrium analysis and security mechanism designs. In addition, we provide a discussion on the advantages, drawbacks, and future direction of using game theory in this field. In this survey, our goal is to instill in the reader an enhanced understanding of different research approaches in applying gametheoretic methods to network security. This survey can also help researchers from various fields develop game-theoretic solutions to current and emerging security problems in computer networking.

2015-05-06
Sumit, S., Mitra, D., Gupta, D..  2014.  Proposed Intrusion Detection on ZRP based MANET by effective k-means clustering method of data mining. Optimization, Reliabilty, and Information Technology (ICROIT), 2014 International Conference on. :156-160.

Mobile Ad-Hoc Networks (MANET) consist of peer-to-peer infrastructure less communicating nodes that are highly dynamic. As a result, routing data becomes more challenging. Ultimately routing protocols for such networks face the challenges of random topology change, nature of the link (symmetric or asymmetric) and power requirement during data transmission. Under such circumstances both, proactive as well as reactive routing are usually inefficient. We consider, zone routing protocol (ZRP) that adds the qualities of the proactive (IARP) and reactive (IERP) protocols. In ZRP, an updated topological map of zone centered on each node, is maintained. Immediate routes are available inside each zone. In order to communicate outside a zone, a route discovery mechanism is employed. The local routing information of the zones helps in this route discovery procedure. In MANET security is always an issue. It is possible that a node can turn malicious and hamper the normal flow of packets in the MANET. In order to overcome such issue we have used a clustering technique to separate the nodes having intrusive behavior from normal behavior. We call this technique as effective k-means clustering which has been motivated from k-means. We propose to implement Intrusion Detection System on each node of the MANET which is using ZRP for packet flow. Then we will use effective k-means to separate the malicious nodes from the network. Thus, our Ad-Hoc network will be free from any malicious activity and normal flow of packets will be possible.

Junho Hong, Chen-Ching Liu, Govindarasu, M..  2014.  Detection of cyber intrusions using network-based multicast messages for substation automation. Innovative Smart Grid Technologies Conference (ISGT), 2014 IEEE PES. :1-5.

This paper proposes a new network-based cyber intrusion detection system (NIDS) using multicast messages in substation automation systems (SASs). The proposed network-based intrusion detection system monitors anomalies and malicious activities of multicast messages based on IEC 61850, e.g., Generic Object Oriented Substation Event (GOOSE) and Sampled Value (SV). NIDS detects anomalies and intrusions that violate predefined security rules using a specification-based algorithm. The performance test has been conducted for different cyber intrusion scenarios (e.g., packet modification, replay and denial-of-service attacks) using a cyber security testbed. The IEEE 39-bus system model has been used for testing of the proposed intrusion detection method for simultaneous cyber attacks. The false negative ratio (FNR) is the number of misclassified abnormal packets divided by the total number of abnormal packets. The results demonstrate that the proposed NIDS achieves a low fault negative rate.
 

Zhen Ling, Junzhou Luo, Kui Wu, Wei Yu, Xinwen Fu.  2014.  TorWard: Discovery of malicious traffic over Tor. INFOCOM, 2014 Proceedings IEEE. :1402-1410.

Tor is a popular low-latency anonymous communication system. However, it is currently abused in various ways. Tor exit routers are frequently troubled by administrative and legal complaints. To gain an insight into such abuse, we design and implement a novel system, TorWard, for the discovery and systematic study of malicious traffic over Tor. The system can avoid legal and administrative complaints and allows the investigation to be performed in a sensitive environment such as a university campus. An IDS (Intrusion Detection System) is used to discover and classify malicious traffic. We performed comprehensive analysis and extensive real-world experiments to validate the feasibility and effectiveness of TorWard. Our data shows that around 10% Tor traffic can trigger IDS alerts. Malicious traffic includes P2P traffic, malware traffic (e.g., botnet traffic), DoS (Denial-of-Service) attack traffic, spam, and others. Around 200 known malware have been identified. To the best of our knowledge, we are the first to perform malicious traffic categorization over Tor.
 

Talawar, S.H., Maity, S., Hansdah, R.C..  2014.  Secure Routing with an Integrated Localized Key Management Protocol in MANETs. Advanced Information Networking and Applications (AINA), 2014 IEEE 28th International Conference on. :605-612.

A routing protocol in a mobile ad hoc network (MANET) should be secure against both the outside attackers which do not hold valid security credentials and the inside attackers which are the compromised nodes in the network. The outside attackers can be prevented with the help of an efficient key management protocol and cryptography. However, to prevent inside attackers, it should be accompanied with an intrusion detection system (IDS). In this paper, we propose a novel secure routing with an integrated localized key management (SR-LKM) protocol, which is aimed to prevent both inside and outside attackers. The localized key management mechanism is not dependent on any routing protocol. Thus, unlike many other existing schemes, the protocol does not suffer from the key management - secure routing interdependency problem. The key management mechanism is lightweight as it optimizes the use of public key cryptography with the help of a novel neighbor based handshaking and Least Common Multiple (LCM) based broadcast key distribution mechanism. The protocol is storage scalable and its efficiency is confirmed by the results obtained from simulation experiments.