Shawky, Mahmoud A., Abbasi, Qammer H., Imran, Muhammad Ali, Ansari, Shuja, Taha, Ahmad.
2022.
Cross-Layer Authentication based on Physical-Layer Signatures for Secure Vehicular Communication. 2022 IEEE Intelligent Vehicles Symposium (IV). :1315—1320.
In recent years, research has focused on exploiting the inherent physical (PHY) characteristics of wireless channels to discriminate between different spatially separated network terminals, mitigating the significant costs of signature-based techniques. In this paper, the legitimacy of the corresponding terminal is firstly verified at the protocol stack’s upper layers, and then the re-authentication process is performed at the PHY-layer. In the latter, a unique PHY-layer signature is created for each transmission based on the spatially and temporally correlated channel attributes within the coherence time interval. As part of the verification process, the PHY-layer signature can be used as a message authentication code to prove the packet’s authenticity. Extensive simulation has shown the capability of the proposed scheme to support high detection probability at small signal-to-noise ratios. In addition, security evaluation is conducted against passive and active attacks. Computation and communication comparisons are performed to demonstrate that the proposed scheme provides superior performance compared to conventional cryptographic approaches.
Aljohani, Nader, Agnew, Dennis, Nagaraj, Keerthiraj, Boamah, Sharon A., Mathieu, Reynold, Bretas, Arturo S., McNair, Janise, Zare, Alina.
2022.
Cross-Layered Cyber-Physical Power System State Estimation towards a Secure Grid Operation. 2022 IEEE Power & Energy Society General Meeting (PESGM). :1—5.
In the Smart Grid paradigm, this critical infrastructure operation is increasingly exposed to cyber-threats due to the increased dependency on communication networks. An adversary can launch an attack on a power grid operation through False Data Injection into system measurements and/or through attacks on the communication network, such as flooding the communication channels with unnecessary data or intercepting messages. A cross-layered strategy that combines power grid data, communication grid monitoring and Machine Learning-based processing is a promising solution for detecting cyber-threats. In this paper, an implementation of an integrated solution of a cross-layer framework is presented. The advantage of such a framework is the augmentation of valuable data that enhances the detection of anomalies in the operation of power grid. IEEE 118-bus system is built in Simulink to provide a power grid testing environment and communication network data is emulated using SimComponents. The performance of the framework is investigated under various FDI and communication attacks.
Shafique, Muhammad.
2022.
EDAML 2022 Invited Speaker 8: Machine Learning for Cross-Layer Reliability and Security. 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). :1189—1189.
In the deep nano-scale regime, reliability has emerged as one of the major design issues for high-density integrated systems. Among others, key reliability-related issues are soft errors, high temperature, and aging effects (e.g., NBTI-Negative Bias Temperature Instability), which jeopardize the correct applications' execution. Tremendous amount of research effort has been invested at individual system layers. Moreover, in the era of growing cyber-security threats, modern computing systems experience a wide range of security threats at different layers of the software and hardware stacks. However, considering the escalating reliability and security costs, designing a highly reliable and secure system would require engaging multiple system layers (i.e. both hardware and software) to achieve cost-effective robustness. This talk provides an overview of important reliability issues, prominent state-of-the-art techniques, and various hardwaresoftware collaborative reliability modeling and optimization techniques developed at our lab, with a focus on the recent works on ML-based reliability techniques. Afterwards, this talk will also discuss how advanced ML techniques can be leveraged to devise new types of hardware security attacks, for instance on logic locked circuits. Towards the end of the talk, I will also give a quick pitch on the reliability and security challenges for the embedded machine learning (ML) on resource/energy-constrained devices subjected to unpredictable and harsh scenarios.
Wang, Xuyang, Hu, Aiqun, Huang, Yongming, Fan, Xiangning.
2022.
The spatial cross-correlation of received voltage envelopes under non-line-of-sight. 2022 4th International Conference on Communications, Information System and Computer Engineering (CISCE). :303—308.
Physical-layer key (PLK) generation scheme is a new key generation scheme based on wireless channel reciprocity. However, the security of physical layer keys still lacks sufficient theoretical support in the presence of eavesdropping attacks until now, which affects the promotion in practical applications. By analyzing the propagation mode of multipath signals under non-line-of-sight (nLoS), an improved spatial cross-correlation model is constructed, where the spatial cross-correlation is between eavesdropping channel and legitimate channel. Results show that compared with the multipath and obstacle distribution of the channel, the azimuth and distance between the eavesdropper and the eavesdropped user have a greater impact on the cross-correlation.
Zhang, Weibo, Zhu, Fuqing, Han, Jizhong, Guo, Tao, Hu, Songlin.
2022.
Cross-Layer Aggregation with Transformers for Multi-Label Image Classification. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3448—3452.
Multi-label image classification task aims to predict multiple object labels in a given image and faces the challenge of variable-sized objects. Limited by the size of CNN convolution kernels, existing CNN-based methods have difficulty capturing global dependencies and effectively fusing multiple layers features, which is critical for this task. Recently, transformers have utilized multi-head attention to extract feature with long range dependencies. Inspired by this, this paper proposes a Cross-layer Aggregation with Transformers (CAT) framework, which leverages transformers to capture the long range dependencies of CNN-based features with Long Range Dependencies module and aggregate the features layer by layer with Cross-Layer Fusion module. To make the framework efficient, a multi-head pre-max attention is designed to reduce the computation cost when fusing the high-resolution features of lower-layers. On two widely-used benchmarks (i.e., VOC2007 and MS-COCO), CAT provides a stable improvement over the baseline and produces a competitive performance.
Xixuan, Ren, Lirui, Zhao, Kai, Wang, Zhixing, Xue, Anran, Hou, Qiao, Shao.
2022.
Android Malware Detection Based on Heterogeneous Information Network with Cross-Layer Features. 2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :1—4.
As a mature and open mobile operating system, Android runs on many IoT devices, which has led to Android-based IoT devices have become a hotbed of malware. Existing static detection methods for malware using artificial intelligence algorithms focus only on the java code layer when extracting API features, however there is a lot of malicious behavior involving native layer code. Thus, to make up for the neglect of the native code layer, we propose a heterogeneous information network-based Android malware detection method with cross-layer features. We first translate the semantic information of apps and API calls into the form of meta-paths, and construct the adjacency of apps based on API calls, then combine information from different meta-paths using multi-core learning. We implemented our method on the dataset from VirusShare and AndroZoo, and the experimental results show that the accuracy of our method is 93.4%, which is at least 2% higher than other related methods using heterogeneous information networks for malware detection.
Saranya, K., Valarmathi, Dr. A..
2022.
A Comparative Study on Machine Learning based Cross Layer Security in Internet of Things (IoT). 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS). :267—273.
The Internet of Things is a developing technology that converts physical objects into virtual objects connected to the internet using wired and wireless network architecture. Use of cross-layer techniques in the internet of things is primarily driven by the high heterogeneity of hardware and software capabilities. Although traditional layered architecture has been effective for a while, cross-layer protocols have the potential to greatly improve a number of wireless network characteristics, including bandwidth and energy usage. Also, one of the main concerns with the internet of things is security, and machine learning (ML) techniques are thought to be the most cuttingedge and viable approach. This has led to a plethora of new research directions for tackling IoT's growing security issues. In the proposed study, a number of cross-layer approaches based on machine learning techniques that have been offered in the past to address issues and challenges brought on by the variety of IoT are in-depth examined. Additionally, the main issues are mentioned and analyzed, including those related to scalability, interoperability, security, privacy, mobility, and energy utilization.
Kharkwal, Ayushi, Mishra, Saumya, Paul, Aditi.
2022.
Cross-Layer DoS Attack Detection Technique for Internet of Things. 2022 7th International Conference on Communication and Electronics Systems (ICCES). :368—372.
Security of Internet of Things (IoT) is one of the most prevalent crucial challenges ever since. The diversified devices and their specification along with resource constrained protocols made it more complex to address over all security need of IoT. Denial of Service attacks, being the most powerful and frequent attacks on IoT have been considered so forth. However, the attack happens on multiple layers and thus a single detection technique for each layer is not sufficient and effective to combat these attacks. Current study focuses on cross layer intrusion detection system (IDS) for detection of multiple Denial of Service (DoS) attacks. Presently, two attacks at Transmission Control Protocol (TCP) and Routing Protocol are considered for Low power and Lossy Networks (RPL) and a neural network-based IDS approach has been proposed for the detection of such attacks. The attacks are simulated on NetSim and detection and the performance shows up to 80% detection probabilities.
Wang, Binbin, Wu, Yi, Guo, Naiwang, Zhang, Lei, Liu, Chang.
2022.
A cross-layer attack path detection method for smart grid dynamics. 2022 5th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :142—146.
With the intelligent development of power system, due to the double-layer structure of smart grid and the characteristics of failure propagation across layers, the attack path also changes significantly: from single-layer to multi-layer and from static to dynamic. In response to the shortcomings of the single-layer attack path of traditional attack path identification methods, this paper proposes the idea of cross-layer attack, which integrates the threat propagation mechanism of the information layer and the failure propagation mechanism of the physical layer to establish a forward-backward bi-directional detection model. The model is mainly used to predict possible cross-layer attack paths and evaluate their path generation probabilities to provide theoretical guidance and technical support for defenders. The experimental results show that the method proposed in this paper can well identify the dynamic cross-layer attacks in the smart grid.